GEOMETRIC PROOF OF A CONJECTURE OF KING, TOLLU, AND
TOUMAZET

CASS SHERMAN

ABSTRACT. King, Tollu, and Toumazet in [KTT04] conjectured that stretching the
parameters of a Littlewood-Richardson coefficient of value 2 by a factor of N would
result in a coefficient of value N 4 1. We prove a slight generalization of this by using
geometric methods and Schubert calculus.

0. INTRODUCTION

Given Young diagrams A, p, v with at most r rows, the associated Littlewood-
Richardson number CKM computes the dimension of the space of SL, invariants of the
tensor product V) ® V, ® V7, where as usual V) denotes the irreducible polynomial
representation of GL, corresponding to A\. Given a whole number N, each row of the
Young diagrams A, p, v can be stretched by a factor of N (so e.g. if N = 2, each row
becomes twice as long, etc) and one may ask how does the number P(N) = C%K N
change with N7 Fulton conjectured (unpublished) and Knutson, Tao, and Woodward
later proved [KTWO04] that if P(1) = 1, then P(N) = 1 for all N. This fact is related
to irredundancy of a certain set of inequalities appearing in Horn’s conjecture [BelO4a].

A natural next question would be what if P(1) = 27 It was given a correct conjectural
answer of P(N) = N + 1 by King, Tollu, and Toumazet in [KTT04] and was proven by
Ikenmeyer in [Ikel2]. Tkenmeyer interprets ¢}, as the cardinality of the set of integral
hive flows on the honeycomb graph of r with borders prescribed by A, p, v. He then
uses combinatorial and algorithmic techniques to count the hive flows and arrives at
the conjectured answer. We will not pursue his methods, although he thinks that they
should generalize, e.g. to the case P(1) = 3.

Instead we will prove the conjecture using the geometric methods established by
Belkale [Bel06,Bel07]. For this, it is helpful to recast the question as follows. Let s > 3,
n > r be integers, and let A!,..., A* be Young diagrams fitting in an r by n — r box
(equivalently, weights of G := SL, of level n — r). Then,

Theorem 0.1. Suppose 3 _, [\| =r(n —7) (the “codimension condition”). If

dim(Vy1 @ ... @ Vas)¥ =2
then
dim(Vyy @ ... @ Vyas)¥ = N +1
for all integers N > 1

Remark 0.1. This generalizes the conjecture of [KTT04] proven in [Ikel2] to an arbitrary

number of weights. Indeed, suppose c§, = 2. Then in particular [A|+|u| = [v|, for this is

the case whenever C/V\u # 0. Choose n large enough that A, p, v each fit in an r x (n —r)
1
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box. Let vV be the Young diagram with (vV), = n —r — 1,_441. One verifies that
Vv & V3, as GL, representations for any N > 1, and that [A| + |u| + |vY| =r(n—r).
Thus, by Theorem 0.1 with s = 3, we have N +1 = (Vy\ ® Vv, ® Vv ) = C%KNM. O

To prove Theorem 0.1, we further translate the question into one of the size of a
moduli space M, which can be described as the s-fold product of the space of complete
flags on an r-dimensional vector space V modulo an equivalence relation - the theorem
holds if and only if M is 1-dimensional (see Section 2.2). This is the technique used
by Belkale [Bel07] to prove Fulton’s conjecture. The moduli space under consideration
has an ample line bundle £ with the property that the global sections of L&V can be
identified with the G invariants of Vi1 ® ... ® Viyas (really its dual). The idea is that
if M has dimension exceeding 1, then £ will have a nonempty base locus Z. From the
properties of L, if F € M lies in Z, then a certain vector space H depending on F will
be nonzero. However, this H must be 0 whenever F consists of “general” flags. While
F itself cannot be taken to be general (for it must lie in Z), we can “trade” F for the
flags induced by F on a subspace of V. These flags will be general enough to allow
us to conclude that H must have been 0, a contradiction. That is, M must have had
dimension 1 all along. The “trading” process derives from techniques of Schofield [Sch92]
(see e.g. his Theorem 5.2), modified so that his Hom and Ext become our H° and H'
of certain two-step complexes.

The author wishes to acknowledge many useful discussions with his thesis advisor
P. Belkale. In particular, I would like to thank him for pointing out the technique of
Schofield in connection to this problem and for showing me how to correct a significant
error in earlier versions of this paper.

0.1. Notation. Throughout k£ will be an algebraically closed field of characteristic 0.
The term “vector space” should be understood to mean finite dimensional over k. In
particular, V' will have dimension r, M will have dimension m, () will have dimension
n—r,and W =2 M & Q will of course have dimension n —r + m.

The quantity [n] for a positive integer n will denote the set of integers {1,...,n}.
Italicized capital letters will denote index sets. An index set in [n] is a subset of [n]
which is written in ascending order. If the index set I in [n] has cardinality r, we will
say that I € ([:f}). It is typical to associate to an index set I € ([’;]) a Young diagram
A(I), whose ath row is given by the equation A, = n—r+a — I,. Finally, the lowercase
letter s will always denote a fixed positive integer greater than or equal to 3.

1. PRELIMINARIES

1.1. Schubert Calculus. The Grassmannian Gr(m, W) of m-dimensional subspaces of
W is a smooth, projective variety of dimension m(n—r). It has distinguished subvarieties
called Schubert varieties, each of which corresponds to a choice of full flag E4 on W and
a choice of index set H € (["jjm]). Explicitly, for such an E, and H, the Schubert
variety is defined as

Qu(E,) = {M € Gr(m,W)|dim(M N E,) > b whenever Hy < a < Hpy1, b=1,...,m}.
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It has codimension .. _,n —r + a — H,. Each Schubert variety has a distinguished
Zariski open subset, isomorphic to affine space, called the Schubert cell. It is defined as

Oy (Ee) ={M € Gr(m,W)|dim(M NE,) =biff H, <a < Hppq, b=1,...,m}

For fixed F,, the Schubert cells over all choices of H disjointly cover the Grassmannian.
As a result of this cell decomposition, the classes wy of the Schubert varieties form an
additive basis for the integral cohomology ring H*(Gr(m, W), Z).

We will be interested mainly in the intersections of s-many Schubert cells. Let £ €
F1(W)?# have entries EY for p = 1,...,s. Given an s-tuple of index sets H € ([nffjm])s,
we make the notational convention

23,(€) = () QU (EY)
p=1
and correspondingly

s
wH:ZZIIwHw
p=1

The latter is nonzero if and only if the former is nonempty for general choice of £ in
FI(W)*. If M € Q3,(€), we will say that M is in Schubert position H with respect to &,
regardless of genericity of £.

One may also detect nonzeroness of a Schubert product in another way. The idea
comes from Kleiman transversality. The tangent space to the Schubert intersection
Q5,(€) at a point M is canonically identified with the vector space:

{¢ € Hom(M,W/M)|p(E(M)E) C 5(W/M)I;Igia fora=1,...m, p=1,.., s},

where E(M) (resp. £(W/M)) indicates the s-tuple of flags induced on M (resp. W/M)
by £. If the product of Schubert classes is nonzero, then for sufficiently general F and
M in the intersection €3,(£), the intersection is transverse at M. That is, the tangent
space at M has its expected dimension m(n —r) — >3 >0 (n — 7 +a — Hg).

A strong converse to this is also true. To state it, we define a generalized tangent
space. For any m-dimensional M (not a priori a subspace of W) and n — r dimensional
@, with s-tuples of flags F € FI(M)® and G € F1(Q)*, we define

Homy (M, Q, F,G) = {¢ € Hom(M, Q)|¢(F}) C G, fora=1,...,m, p=1,..,s},
The next proposition is Proposition 2.3 in [Bel06].
Proposition 1.1. wy # 0 if and only if for general (F,G) € FI(M)* x FI(Q)®, one has

S m

(1) dimHomH(M,Q,}",(]):m(n—r)—ZZ(n—r—i—a—Hg).

p=1a=1

1.2. Parabolic Vector Spaces. A parabolic vector space is a 3-tuple (M, F,\) con-
sisting of a vector space M of dimension m, an element F of FI(M)*, and an s-tuple
A of nonincreasing sequences of real numbers with each sequence of having length m.
Given an e-dimensional subspace R of M whose Schubert position in M with respect
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to F is given by the s-tuple of index sets £ € ([’:]), we define the parabolic slope of R
to be:

(2) pr=(1/e)dy > A

p=1 a€EP

(note the unfortunate change of the meaning of £ from Section 1.1). A parabolic vector
space is said to be semistable if for every subspace R of M, one has pur < par.

Given M and F as above, an integer n — r > 0 and an s-tuple of index sets H €
([”_r+m])s, we may associate a parabolic vector space

(M, F,n—r,\(H)) where A(H)? =n —r+a— HP.

Since the parabolic slope of a subspace depends only on its Schubert position, we define
the slope pg of a Schubert position £ by the same formula (2).

1.3. Parameter Spaces. The parameter spaces below will facilitate the key dimension
calculations in the proof of Theorem 0.1. For £ in ([”;])8, as in [Bel06] we introduce
the “universal intersection” Ug(M) whose points are pairs (R, F), where R is an e-
dimensional subspace of M in Schubert position €& with respect to F € FI(M)*®. Also,
we have a parameter space lying over Ug, denoted Hy ¢ (M, @), whose fiber over (R, F)
is the set of pairs (G, ¢), where G € FI(Q)® and ¢ € Homy(M,Q,F,G) is such that
ker¢ = R. The vector spaces M and @ will often be omitted from the notation.
Let V have dimension r. Fix integers 0 < g < f < r. Let

S S ,C S S S
0w (S (e () e () e )
r f g f g
where the first three are chosen arbitrarily, the fourth is given by L} = Iﬁ’{p for a =

1,..., f, and the fifth is determined by the rule Jg = K7, for a =1,...,g. Let Ay s 4(V)

be the scheme over Spec(k) whose closed points are tripleas of the form (S, S’,T') where S
and S’ are f-dimensional subspaces of V' that intersect in a g-dimensional space T'. Let
Ui, 7 (V) be the scheme over Ay 5, whose fiber over (S, S’ T') is the set of all F € FI(V)*
such that S, 5" € Q- (F) and T € Q% (F).

Also, let Hz ¢, 7(V, Q) be the scheme over Uy, 7 whose fiber over a point (S, S, T, F)
is the set of quadruples (G,G’, ¢, ¢’) where G,G" € FI(Q)*, ¢ € Homz(V,Q, F,G), ¢' €
Homz(V,Q, F,G'), and ¢,¢' are such that ker¢p = S, ker¢’ = S’. The properties of
these schemes, including their existence, is proven in Appendix A. For convenience, we
summarize the results below.

Lemma 1.2. We will use the phrase “X is irreducible over'Y ” for an irreducible scheme
Y to mean that for all irreducible schemes Z overY , the scheme X Xy Z is irreducible.
With this terminology, we have:

(1) Ug(M) is surjective, smooth, and irreducible over Gr(e, M) of relative dimen-
sion dim FI(M)* — > 27| [A(EP)].

(2) Hye(M,Q) is surjective, smooth, and irreducible over Ug(M) of relative di-
menston

(m—e)(n—r)+dmFIQ)* + > Y (n—r+EL — Hp,) — > |AH)|.

peS a=1 peES
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(3) Ay.5g4 is irreducible and smooth over Spec(k) of dimension 2(f — g)(r — f) +

g(r —9).
(4) U, 7(V) is surjective, smooth, and irreducible over Ay ¢, of relative dimension

dimFI(V)* 4+ [AJP)[ = 2D [MEP)[ =2 |ANP)].
p=1 p=1 p=1

(5) Hzx,7(V,Q) is surjective, smooth, and irreducible over Ux 7(V) of relative
dimension

S
2(r — f)(n—r) + dim FI(Q)* + 2 (IN(LP)| = [AIP)] — [A(KP))).
p=1

1.4. Hom Data. We define “generic” configurations for morphisms M — @ of vector
spaces equipped with s-tuples of complete flags. The first such configuration will be
called the Homy data. It is the set theoretic function hdy on F1(M)* x FI(Q)* which
assigns to a pair (F, G) the triple (D, e, £), where D is the rank of Homy (M, Q, F,G), e is
the minimum of the dimensions of ker ¢ as ¢ ranges over Homy (M, Q, F,G), and £ is the
Schubert position of ker ¢ in M with respect to F for all ¢ in some dense open subset of
Homy (M, @, F,G). Such an £ exists, as one sees by stratifying Homy (M, Q, F,G) into
disjoint subschemes indexed by the Schubert position of the kernel. These subschemes
are constructible, cover Homy (M, @Q, F,G), and there are only finitely many of them.
Hence exactly one contains an open set.

Similarly, we define the Homj, data to be the set theoretic function hd), on F1(M)® x
FI(Q)* x FI(Q)® which assigns to (F,Gi,Gs) the octuple (D', D? e!,e?,t,EY, 2 T)
where

e D' = dim Homy (M, Q, F,G;).

e ¢’ = min(dim(ker ¢;)) where the min is taken over ¢; in Homy (M, Q, F,G;).

o t = min(dim(ker ¢ Nker ¢2)) where the min is taken over the open subset of pairs
(¢1, d2) in Homy (M, Q, F,G1) x Homy (M, Q, F,Go) such that dim(ker ¢;) = e
fori=1,2.

e &' is the unique element of ([:ﬂ)s such that a nonempty open subset of ¢; in
Homy (M, Q, F,G;) satisfies ker ¢; € Q2,(F) C Gr(e', M).

e 7 is the unique element in ([T])s such that a nonempty open subset of (¢1, ¢2)
in Homy (M, Q, F,G1) x Homy (M, Q, F, G) satisfies ker ¢y Nker ¢pp € Q5-(F) C
Gr(t,M).

Definition 1.1. Let (F,G) € FI(M)* x F1(Q)® and suppose that hdy(F,G) = (D, e, E).

We will say that ¢ in Homy(M,Q,F,G) is a general element if dimker¢ = e and

ker ¢ € Qg (F). Similarly, let (F,Gi,G2) € FI(M)* x FI(Q)* x FI(Q)*® and suppose that
hdy, (F,G1,G2) = (D', D? et e t, Y, 2, T).

We will say that (¢1,¢2) in Homy (M, Q,F,G1) x Homy (M, Q, F,Gs) is a general el-

ement if dim(ker ¢;) = e*, dim(ker ¢1 Nker ¢2) = t, ker ¢; € Q% (F), ker 1 Nker ¢ €

Q%(F). In both cases, the set of general elements is nonempty and open.

Take a closed subvariety Z of FI(M)® and closed subvarieties Y7, Y2 of F1(Q)®. The
following lemma says that there is a generic Hom}, data over Z x Y1 x Y. It is easy to
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verify using the fact that there are only finitely many possibilities for Hom/, data (D'
must be one of 0,1, ...,m(n — r), e’ must be one of 0,1, ..., m, etc.).

Lemma 1.3. There is a dense open set U C Z xY] XYy such that hde is constant over
(F,G1,G2) in U. Moreover, if Y1 = Ya, one has D' = D?, el = €2, &' = &2, and in this
case hdy = (DY, e',EY) for all (F,G) in the image of either projection of Z x Y1 x Y1
to Z x Yl.

2. GIT

This section is devoted to translating Theorem 0.1 into a question of geometry, specif-
ically of the dimension of a certain moduli space. The expert reader may wish to skip
ahead to Theorem 2.3. The steps leading up to the theorem are standard, but the
author has not seen them assembled to his satisfaction elsewhere, thus their inclusion
below.

S

2.1. Borel-Weil Theory for SL. Suppose given an s-tuple of dominant weights \!, ..., A
for SL, = SL(V'). View M\ as a Young diagram with at most » — 1-many nonzero rows
and suppose the distinct column lengths of AP are

/4 /4 P
r>dy>dy > > dey,

Let b be the number of columns of AP of length d. Finally, let X? be the partial flag
variety consisting of flags

)>O-

r
k? D) Fd’;’ D) .F1[112J D...D ng(,\p) D) 0,

where subscripts denote dimension. One has a sequence of SL,-equivariant embeddings.

C(XP) ) C(AP) C(AP)
XP H Gr(df, 7“) Plicker H P(/\df k‘r) Veronese H P(Symbﬁ) (/\df kr))
=1 =1 =1
Seare, pofAgym® (AT ET)) 1= P(AP).

Let LP denote the pullback of Op(y»)(1) to XP. Then L? is an SL,-equivariant line
bundle on XP. The quotient

HO(P(NP), Op(ar)(1)) — H°(XP, LP)
is isomorphic in the category of SL, representations to the quotient
(@ 8ym" (AR V.

See Chapter 9 of [Ful97] for full details.

If we instead start with NA?, the d¥ do not change, while the b are multiplied by
N. Let WP = A% k™ and note that the map Pic(P(Sym™% W})) — Pic(P(W?)) induced
by the Veronese embedding is multiplication by Nb! (when both sides are identified
with Z by O(1)). Since the pullback of O(1) under the Segre embedding is the box
tensor product of O(1) on the factors, it follows that the pullback of Op(nar)(1) to XP
is (LP)®N. Therefore, HO(XP, (LP)®N) = V3, as representations.

Let X .= H;:1 XP_ and define the SL,-equivariant line bundle Ly = Xp_,LP on X.

It now follows from the Kiinneth formula that the space of sections of EN?N is isomorphic
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as a representation to ®p_, Vip- Note that L, is the pullback of the box tensor product
of O(1)’s under the embedding of X into [[;_, P(\?), so in particular is very ample. To
summarize,

Proposition 2.1. Let \',...,\* be dominant weights for SL,.. There exists a product
X of s-many partial flag varieties and a very ample line bundle Ly on X such that
HO(Z%N) is isomorphic as an SL, representation to the tensor product of the represen-
tations Vyyp-

2.2. The Conjecture Translated into GIT. In the language of GIT, the SL,-
equivariant line bundle £, on X is a linearization of the SL, action on X. Given a
point x = (F},..., F?) of X, the Hilbert-Mumford criterion equates the semistability of
x in the sense of GIT to the validity of a system of inequalities involving the partial flags
FY (see [Ful98]). These inequalities turn out to be precisely the ones defining parabolic
semistability. More accurately, the point x is semistable if and only if some (equivalently,
any) point F in the fiber over x in F1(V')* is parabolic semistable, where stability is de-
fined by the weights \P. Let (F1(V)*)% denote the parabolic semistable locus on F1(V').
The proposition below now follows from standard GIT - see e.g. [New78], [MFK94].

Proposition 2.2. There exists a projective, normal quotient M of X by the action of
SL,, and a surjective morphism 7 : (F1(V)*)5% — M.

Now let Z € ([Zf])s be such that A(Z) satisfies the codimension condition of Theorem
0.1. Let 5\(1) denote the s-tuple of Young diagrams obtained from A\(Z) by truncating
each row of A\(Z)P by the amount A\(Z)F; the dominant weights of SL, corresponding to
AMZ) and A\(Z) are the same. Defining X and L7 := EX(Z) as in Section 2.1, we obtain
again a moduli space Mz. In addition, the hypothesis on Z ensures by the theory of
Kempf [Pau96] that the line bundle £z descends to Mz.

Theorem 2.3. Let T € ([2})8 be such that

(4) ZZ(n—r—l—a—Ig):r(n—r).

p=1a=1
Then there exists Mz and 7 as in Proposition 2.2 and an ample line-bundle L7 on Mz
such that ©* L1 = Lz|(pyv)syss. Moreover, the pullback

s HO(Mz, £5V) = HO(FIV)*)™, LY giv)e)ss)

has image given by the subspace H*(X,L3N)E of HO(FI(V)S,EN%@N|FI(V)5) (note: in-
variant sections on the semistable locus extend uniquely to global invariant sections, see
Lemma 4.15 of [NR93]). That is, by Proposition 2.1,

HO Mz, LEN) = (Vi @ . @ Vije) o

Corollary 2.4. Theorem 0.1 is equivalent to the following statement. If T, Mz, and
Lz are as in Theorem 2.3, and h°(Mz, L1) = 2, then h(Mz, LZN) = N+1 for N > 1.

The degree of the Hilbert polynomial of an ample line bundle on a projective variety
is the dimension of the variety, so by Corollary 2.4, Mz has dimension 1 if Theorem
0.1 holds. Conversely, suppose dim Mz = 1 and h%(Mz, L7) = 2. Then, since Mz is



8 CASS SHERMAN

dominated by the rational variety (F1(V)*)%%, Mz itself is rational by Liiroth’s theorem.
Therefore, Mz =2 P! and £7 must in turn be O(1) (note: we’ve used here the normality
of Mz). Clearly, h°(P!,O(N)) = N + 1, so by Corollary 2.4, Theorem 0.1 holds. Thus,
it suffices to prove the following theorem.

Theorem 2.5. (Equivalent to Theorem 0.1) Suppose I € ([Z])S is such that (4) holds

and that hO(MI, Lr1) = 2. Then Mz is 1-dimensional. In this case, the argument above
gives (Mz, L1) = (PL,0(1)).

2.3. Theta Sections of L7. Given G € F1(Q)®, Belkale [Bel04b] constructs a sec-
tion 6(Q,G) in H°(Mz,Lz). In his construction, there is an open dense subset of
(F1(Q)*)h*Mz.£1) guch that for Gy, ..., Gpo in this subset, the set {8(Q, G1), ..., 0(Q, Gpo)}
gives a basis of H?(Mz, Lz). For our purposes, the only other important property of

these sections is the vanishing loci of their pullbacks to F1(V)%. Denoting the pullback
also by 8(Q, G), we have that 6((Q), G) vanishes at F if and only if Homz(V, Q, F,G) # 0.

3. Two-STEP COMPLEXES

The proof of Theorem 2.5 turns on dimension counts of spaces Homz(V, Q, F,G).
If Mz exceeds the dimension predicted, there will be a nonempty closed locus Z in
(F1(V)*)% where Homz(V, Q, F,G) is nonzero for general choice of (F,G) € Z x F1(Q)*
(note that Homz(V,Q,F,G) is the “certain vector space H depending on F” of the
introduction). The dimension counting techniques below will expose this as a contra-
diction.

To better organize our computations, we introduce two-step complexes. For flags
F, e FI(M), G, € F1(Q), and a nondecreasing sequence of nonnegative integers

9:((91 gegggemgn—r),
define
Py(F,,Ge) :={p € Hom(M, Q)|¢(F,) C Gy, for a =1,...,m}.

It is clear that dim Py = )" 0,. If F is an s-tuple of flags on M, G likewise on @,
and ¥ an s-tuple of nondecreasing sequences as above, we define the two-step complex:

(5) A(M,Q, F,G,9) := (0 — Hom(M, Q) L @’S’lm

—0)
We denote
HY(A(M,Q,F,G,0)) =ker(y) and H'(A(M,Q,F,G,0)) = coker(y),

with the corresponding lowercase h? and h' for the dimensions of these, as usual. We
also define the Euler characteristic Y = h® — h', which is the same as the difference of
dimensions between the domain and codomain of v. One easily computes:

X(AM,Q, F,G,0)) =m(n—r) =Y > (n—r—060).

peS a=1

For an s-tuple of index sets H, let us define s-tuples of nondecreasing sequences J(H)
by the prescription 65 = HY — a. In this case,

(6) HY(A(M,Q,F,G,9(H))) = Homy (M, Q, F,G).
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Let R be an e-dimensional subspace of M in Schubert position £ with respect to the
flags F. The natural restriction map p : Hom(M, Q) — Hom(R, Q) is such that:

p(Pycrr)(FY,GE)) = Poiyr) (FP(R)s, GY),
where ) € (["72“})8 is given by
(7) YP = HYy — B0 +afora=1,. e, p=1,.,s.
IfC=AMQ,F,G,9H)) and C(R) = A(R,Q,F(R),G,9())), the above shows that p

induces a surjective map of complexes p : C — C(R). From this, we obtain the following
useful proposition. It says roughly that if F is arbitrary, and G is chosen in general
position with respect to F, then the dimension of Homy (M, Q,F,G) (the quantity of
interest) is controlled by the dimension of Homy (R, Q, F(R),G), where R is a certain
subspace of M.

Proposition 3.1. Fiz F € FI(M)*. Let O = Ory be an open subset of F1(Q)® such
that hdy (F,G) = (D, e, ) is constant over G € O and such that the morphism

(8) Hy elo = Hae Xpiansxri@)s {F) x 9) = {F} x O

is flat and surjective. A nonempty such O ezists by Lemma 1.8 and generic flatness.
If G is in O and ¢ is a general element of Homy (M, Q, F,G) with kernel R, then the
restriction p induces an isomorphism H*(C)=H!(C(R)).

Proof. Recall the parameter spaces of Section 1.3. We have by Lemma 1.2 that Hy, ¢
is surjective and smooth over Ug of relative dimension:

9) rel dim(Hy.e — Ug) = dimFI(Q)® + x(C) — x(C(R)).

Under the natural projection Hy ¢ — FI(M)* x F1(Q)?, the fiber over a point (F,G’) of
{F} x O is a dense open subset (by choice of £) of Homy (M, Q, F,G’"). In particular,
the fibers are irreducible. Since flat maps are open, it follows that Hy g|o itself is
irreducible and that the fiber over (F,G) has dimension dim Hy ¢|p — dim F1(Q)®. But
we know from (6) that the dimension of this fiber equals h°(C), so:

(10) h2(C) = dim Hy g|p — dim F1(Q)*.
Let Ur denote the open, irreducible image of Hy ¢|o in
(11) Q¢(F) = Ue xpvys {F}

By smoothness of Hy ¢ over Ug, the scheme Hy ¢ X, Ur is smooth over Ur of relative
dimension given by (9). Since Hy ¢|o is an open subset of Hy ¢ Xy, Ur, we have

(12) dimHy ¢|p = dim Ur + dim FI(Q)* + x(C) — x(C(R)).

By the description of Uz as an open subset of the Schubert intersection (11), we can
combine (10) and (12) to obtain:

(13) h(C) < dim(Qg(F) at R) +x(C) — x(C(R)),

where the first summand above should be understood as the dimension of the largest
irreducible component of €2z (F) passing through R.
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The first summand in (13) is bounded by the dimension of the Zariski tangent space
to Q2(F) at R, which is given by

Homg (R, M/R, F(R), F(M/R)).
The chosen map 1 : M — @ induces an injection:
(14) Home(R, M/R, F(R), F(M/R)) — Homy(R,Q, F(R),G),
where Y is as in (7). It is easy to see that
(15) Homy (R, Q, F(R),G) = H*(C(R)).
Thus, it follows from (13) and (14) that
ho(C) < B°(C(R)) + x(C) — x(C(R)).

This rearranges to the inequality h'(C) < h'(C(R)). But p : HY(C) — H'(C(R)) is
surjective by the Snake Lemma, so the proposition follows. Il

The reader may wish to jump now to Appendix B. The proof there of the Horn
conjecture uses Proposition 3.1 in a straightforward way. In that regard, it serves as a
nice warm-up for the more complicated argument of Section 5.

4. OUTLINE OF THE PROOF OF THEOREM 2.5

The argument in Section 5 runs roughly as follows. We assume that Theorem 2.5
is false, i.e. that M7z has dimension at least 2. Then, £7 has a base locus, which
we can lift by 7 to F1(V)®. Take an irreducible component Z which meets the open,
semistable part of F1(V)®. Then, for general (F,G) in Z x F1(Q)?, it is easy to see that
Homz(V,Q, F,G) # 0 (Lemma 5.1). This will end up being contradicted.

Using the hypothesis H°(£z) = 2, we find (Proposition 5.2) that Z is dominated by
H7 i, 7 for a certain choice of K, J. Choose a general point F in Z and a general point
(F,G.G.¢,¢') in Hr 7 over F. Set S =ker¢, 8" =ker¢/, T =5nS".

The goal is to show that Homz(V, @, F,G) = 0. The quantity Homz is computable
when the flags are generic (cf. [Bel06]). Since F is in Z, genericity cannot be assumed.
However, Proposition 3.1 gives a link between Hom for V' with flags 7 and G to Hom
for S with flags F(S) and G. It is more convenient to express the link in terms of H'’s,
but these relate directly to the Hom’s in that they indicate their deviations from the
expected value. Specifically, Proposition 3.1 applied to ¢ tells us that:

H'(A(V,Q, F,G,9(1))) = H'(A(S,Q, F(S),G,9(1))).

Again, if (F(S), G) was general, the right hand side would be computable, in fact, zero by
Horn’s conjecture. But F(.S) is required to have a subspace T of S in a certain Schubert
position, so it cannot be assumed generic. However, a variant of Horn’s conjecture is
proven in Section 6, for which (F(S),G) is general enough.

We conclude that the right hand side of the above equation is 0. Hence, the left
hand side is 0 and Homz(V, @, F,G) has its expected dimension. A consequence of the
codimension condition on Z is that the expected dimension is 0. Contradiction.
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5. PROOF OF THEOREM 2.5

Assume 7 satisfies the hypotheses of Theorem 2.5 and suppose to the contrary that
dim Mz > 2. Since L7 is ample and M7 is projective and normal, it follows that there
is a nonempty base locus Z’ of Mz where all sections of £ vanish. Fix once and for all
an irreducible component of the preimage of Z’ in (F1(V)*)® and take its closure Z in
F1(V')*. Since Z contains semistable points, there is a Zariski open subset Uz such that
for all 7 in Uy, the parabolic vector space (V,F,n —r, A\(Z)) is semistable. Let Upy(q)s
be the open subset of F1(Q)® such that (Q,G) (see Section 2.3) is not the zero section
of Lz for any G in Upyg)s. We establish the statement to be contradicted.

Lemma 5.1. If (F,G) € Uz x Upyq)s, the vector space Homz(V,Q, F,G) is nonzero.
Proof. The divisor of F1(V)*® associated to 0(Q,G) is

Dg = {F' € FI(V)*|Homz(V, Q, F', G) # 0}
Since F € Uz maps into the base locus of L7, every such divisor passes through F. [

By Lemma 1.3 and generic flatness, there is a largest nonempty open subset
of Z x F1(Q)* x F1(Q)* over which the Hom/ data is constant, say hd%(F,G,G’)
(D, f,9,K,J) for all (F,G,G") in U, and such that Hz x 7|5 — U is flat and surjective.
Note by Lemma 5.1, we have strict inequality f < r.

I <

Proposition 5.2. The morphism
(16) Hzx 7 — FI(V)® x FI(Q)* x F1(Q)*
factors through a dominant map pr to Z x F1(Q)* x F1(Q)*.

Proof. Clearly by construction the image of the map (16) contains a dense open subset
of Z x FI(Q)® x FI(Q)* (namely U). To prove the proposition, it suffices to show that
the image of the projection pr; : Hz i 7 — FI(V)* lies in Z.

Let B denote the image of pr in F1(V)* x F1(Q)* x F1(Q)*. Since in particular, U C B,
we have that B dominates F1(Q)® x F1(Q)*®. Thus, the general element (F,G,G’) € B is
such that 0(Q,G) and 6(Q,G’) form a basis for H°(Lz). If (¢, ¢') is any point of Hz x 7
over (F,G,G’), then tk¢ = rk¢/ =r — f > 0. It follows that 6(Q,G), 0(Q,G’) vanish at
F. So F is in some component of the inverse image of Z’ in F1(V)*. In sum we have:

e The image of pr; contains a dense open subset of Z.
e The image of pr; lies in the inverse image of Z’ in F1(V)*.
e The image of pr; is irreducible (since Hz k. 7 is).
It follows that pri(Hzx 7) C Z. O
Since pr is dominant (5.2), we may let W C Z x F1(Q)*® x F1(Q)® be a nonempty open
subset such that

(1) Hz k7 is flat and surjective over .
(2) If (F,G,G") € W, then F is semistable with respect to Z.

Pick a general point (F,G,G’, ¢,¢') in Hz k7 whose image lies in W, with S = ker ¢,
S" =ker¢’, and T = SN S’. Then, by property (1) of W and Proposition 3.1, we have:

(17) H'(A(V,Q, F,G,9(1))) = H'(A(S,Q, F(5),G,9(Z))),
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where 7T is given by I¥ = I7, — K¢ 4 a. By Proposition 6.1, the induced flags (F(S),G)
are “general enough” for apphcatlon of Proposition 6.2. Moreover, the inequalities of
Proposition 6.2 follow from property (2) of W. Therefore, the right hand side of (17)
is zero. We conclude that Homz(V, @, F,G) has its expected dimension, which is zero,
since Z is assumed to satisfy the codimension condition (4). So by 5.1, we have arrived
at a contradiction. QED.

6. VANISHING OF H! FOR S

In this section, we will prove the propositions needed in the last part of Section
5 to show that H'(A(S,Q,F(S),G,9(Z))) = 0. To do this, we need to know that
if (F,G,G',¢,¢") is general in Hz 7, the flags (F(ker¢),G) € Fl(ker¢)® x FI(Q)*
are “as general as possible” with respect to one another, given the condition that the
induced flags on ker ¢ will always have subspace of ker ¢ in Schubert position N (namely
ker ¢ Nker ¢’). To this end, fix some S € Gr(f,V). Define Zg »r C FI(S)* to be the set
of flags Fg such that Q},(Fs) is nonempty. Then, Zg x is locally closed and irreducible,
as it is the image of Uxr(S) in F1(S)®. The next proposition proves the statement about
induced flags being “as general as possible.” See Section 1.3 for definitions. Note that
a vertical bar and a subscript following a parameter space - for example, “Hz x 7|s” -
denotes the fiber over the last subscript, as usual.

Proposition 6.1. The map Hz i 7|s — Zsn x FI(Q)® : (F,G,G,¢,¢") — (F(S),G)
is dominant.

Proof. We have a map Hz x 7|s = (Hzx(V)|s)|z x Hom(V, Q) which sends the point
(F,G,G",0,¢") to (F,G,¢,¢") (Proposition 5.2 guarantees that F € Z). Let U denote
the image. Now by choice of K, the map U — F1(Q)® is dominant. Fix G in the image.
To prove the proposition, it suffices to show that U|g — Zg nr is dominant.

Suppose (F,G,$,¢') € U|g is a point, with say S’ =ker¢/, T'= SN S". Let Gg g1
be the largest subgroup of GL(V) which acts on S, S’, and T, and acts trivially on
V/S. Suppose g € GS 5 - Then we observe that ¢ € Homz(V,Q, §F,G) since G acts
trivially on V/S, and that S,5" € QR(§F), T € Q%(gF). Finally, we note that given
a homomorphism ¢’ with ker ¢/ = S’ € Qf(gF), one can construct G’ € F1(Q)* so
that ¢’ € Homz(V,Q,§F,G’) (this is how the moduli space Hz x is built over Ux and
similarly Hz x 7 over Uk 7). We conclude that (§F,G, ¢, ¢') € Ul|g, which is to say
that Gé‘g,’T acts on U|g, and this action restricts to (U|g)|r.

We remark that (U|g)|r is nonempty for any g-dimensional subspace T' of S. One
can see this by using the action on U|g of the stabilizer group Hg of S in GL(V') given
by h-(F,G,¢,¢') := {hFEY5_1,G,¢poh™ ¢/ oh™1). This takes a subspace T' € Q% (F)
to T" = hT € Q% (hF), and any such 7" can be realized as hT for suitable h € H. Thus
we have reduced the problem to showing (U|g)|7 — Zs 1 is dominant for all T (see
below the proof for the definition of Zg 1 z).

Note that Ggg,j acts by restriction to a subgroup of GL(S)** on Zg 1 . As can be
seen with a basis argument, this action is transitive, and the map (U|g)|r = Zs1 N is
equivariant with respect to the above actions. The desired dominance follows. O
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For an f-dimensional vector space S, a g-dimensional subspace 7', and a Schubert
position N € ([g })S, one has an irreducible, locally closed subvariety of F1(S)*® given by:

Zstn ={Fs € FI(S)*|T € Q3 (Fs)}-

If g =0, define Zg 1 n = FI1(S)®. The next proposition and its proof are variants on the
formulation of the Horn conjecture and its proof that appears in Appendix B.

Proposition 6.2. Let S be an f-dimensional vector space with f < r, T a g-dimensional
S
subspace, @ an (n — r)-dimensional vector space, N € ([g]) a Schubert position in S,
and (Fs,G) a general element of Zspn x FI(Q)® (see Lemma 1.3). Let T € ([n_;+ﬂ)s.
Suppose for every nonzero subspace R of S, one has the inequality:
dim R )

Z Z (n—r+ XL —10,) < dim(R)(n — 1),

peES a=1
where X is the Schubert position of R in S with respect to Fs. Then the vector space
HYA(S,Q, Fs,G,9(T))) is zero.

Proof. We proceed by induction on the dimension f of S. If f =1, then Zg7 » = pt,
and G is a general element of F1(Q)®. In this case, H°(A (S Q, Fs,G,9(Z))) is the space
of all ¢ : S — @ such that Im(¢) is contained in () Since G is generic, we

compute the dimension h° of this space to be

(n—r)=>Y (n—r+1-17),

peS

peS IP—l'

a nonnegative number by the inequality hypothesis. This number is also equal to
X(A(S,Q, Fs,G,9(Z))), so h! =0, as desired.

Assume now that f > 2. Let ¢ € Homz(S,Q,Fs,G) be a general element. We
observe that the inequality for R = S can be expressed as x(A(S, Q, Fs,G,9(Z))) > 0.
If the general element ¢ is zero, then h! = 0 follows, so we may as well assume ¢ # 0.
Let f < f be the dimension of S = ker¢ and set T = SN T. Let Y be the Schubert
position of S in S with respect to Fg, and let N be the Schubert position of T in S.
By the genericity hypothesis on the flags and Proposition 3.1, we have

(18) HI(A(Sa Q?‘F5>g’ﬁ(j’))) = Hl(A(§>Q7fS(§)>g,19(j/)))a

where 7/ € ([nf;ﬂ;rﬂ) is defined by IV = (Ip ~YP4a)fora=1,..,f.

Let G be the subgroup of GL(S) consisting of those group elements which act on T,
S, and T, and act trivially on S/S’ If § € G**, then it is easy to see that (§Fs,G) €
Zsrn x FI(Q)® and ¢ € Homz(S,Q, §Fs,G). On the other hand, a straightforward
argument with bases shows that G5 acts transitively on the set of flags Z SN Thus,
the general pair (Fs,G) € Zsr.n x FI(Q)® induces a general pair (Fs(S),G) € Zg 7 57
(compare with the proof of Proposition 6.1).

We are now in position to apply the inductive hypothesis to the right hand side of
( 8). We need only check that the appropriate mequahtles hold for all subspaces R of
S. But this follows immediately from regarding R as a subspace of S, where inequalities
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are assumed to hold, and the fact that R C S has Schubert position X in S with respect
to Fs(9) if and only if R has Schubert position Y in S with respect to Fs. a

APPENDIX A. REPRESENTABILITY

The goal of this appendix is to prove Lemma 1.2. Points (1) and (2) are proven
in [Bel06] and [Bel07]. We will prove (3), (4), and (5). To begin, we present a lemma
from the appendix of [Bel06]. The dimension count is new, but follows from Belkale’s
argument in a straightforward way.

Lemma A.1. Let P be a vector bundle of rank p on a scheme Z. Assume that P
has a subbundle % which is filtered by subbundles 0 = ¥y C ¥ C ... C X = X.
Let 0 = by < 01 < ... < U < p be nonnegative integers. Let o : Sch/Z — Set be
the contravariant functor which associates to a scheme T over Z the set of complete
filtrations Fe of P|r by subbundles such that the composite map

Ealr = Blr = Plr/Fe,

is 0 for alla =0,....k. Then « is representable by a scheme A which is surjective and
smooth over Z of relative dimension

-1
(19) dim F1(k”) — pz:rk(th),
t=1

where ¢, = max{all, < t}. Moreover, if Z is irreducible, so is A.
Also, if & is the same functor as o with the stricter condition that

Za|T — Z’T — 'P|T/.Ft

is exact whenever by <t < {lyr1—1, then & is represented by an open, possibly empty
subscheme A of A, which is also surjective and smooth over Z, and irreducible if Z is.

Remark A.1. The schemes A base change properly, in the sense that if Z/ — Z is
a morphism, then A x; Z’ represents the functor corresponding to the pulled back
bundle P|z with the pulled back filtration. In particular, if Z' — Z is a morphism of
irreducible schemes, then A| z¢ is irreducible.

Remark A.2. In the case where 0 = 3o C X1 C ... C X, = X is a complete filtration
of ¥ (with all inclusions proper) and 0 = ¢y < {; < ... < {;; < p (with all inequalities
strict, hence corresponding to some L € (ﬁ)), the quantity Zf;ll rk(X,,) in (19) is equal
to kp — Z’;:l {,. This may be rewritten as |[A(L)| + dim F1(k*). Thus, the relative
dimension of A over Z is then:

(20) dim F1(k?) — |A(L)| — dim F1(k*)
(where the lower “k” of course refers to the field).

Let K, J, and NV be as in Section 1.3 (3). We will build the scheme Uk 7(V) in
several steps. Recall that we would like Ui 7 on the level of points to be the set of all
tuples (S, 5", T, F), where S and S’ are f-dimensional subspaces of V' with g-dimensional
intersection T', satisfying S, 5" € Qf-(F), T € Q% (F). Thus, a natural starting point
would be to consider the contravariant functor Ay, : Sch/k — Set which associates
to each k-scheme Y the set of triples consisting of two rank f subbundles S and S’ of
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V ® Oy, and a rank g subbundle 7 of V ® Oy such that T — V ® Oy is precisely the
kernel of

VoOy = (Ve Oy/S)® (Ve Oy/S).
The functor Ay ¢, is representable by a smooth, irreducible scheme Ay r , of dimension
(if nonempty) 2(f — g)(r — f) + g(r — 9).

Indeed, one builds Ay ¢, by starting with the Grassmannian of g-dimensional sub-
spaces of V', which has dimension g(r — g). Using the tautological bundle on the
Grassmannian, one can build a scheme over Gr(g,V) (smooth of relative dimension
(f —g)(r — f)) whose fiber over T is the set of all f-dimensional S in V' containing 7.
Similarly, build over that scheme the scheme whose fiber over (T, S) is the set of all S’
containing T'. The locus where T is precisely the intersection of S and S’ is open. This
proves (3) in Lemma 1.2.

We now define a functor B : Sch/A¢ r, — Set which associates to Y the same data as

Ayt with the additional data of s-many complete filtrations by subbundles {.7:.7— P =1

of T (so k-points of B look like (S, S’, T, Fr)). This is clearly representable by the flag
bundle

B = Fl(T) XAf,f,g -ees-many--- XAf,f,g Fl(T)
over Ay r 4, which is irreducible, surjective, and smooth over Ay r , of relative dimension
dim F1(k9)®.
Similarly, define a functor C : Sch/B — Set which associates to Y the same data as
B with the additional data of s-many complete filtrations by subbundles {]—';9 P p=1 Of
S, subject to the constraints that for p =1,...,s,a = 0, ..., g, the kernel of 7 — S/]-"ts’p
is precisely Fi P whenever N? < t < N7, - here we take N = 0,N},, = f+ 1. The
k-points of C look like (S, S’, T, Fr, Fs) so that Fr is the s-tuple of flags induced on T'
by Fs and T is in Schubert position N in S with respect to Fg.

The functor C sits atop a tower of functors,
C=Cs—Cs.1—..>C—C1 =B,

where C; associates to Y the same data as B with the additional data of a complete
filtration by subbundles ]-";S’l of §, subject to the constraints that for a = 1, ..., g, the
kernel of T — S /.7-";9 s precisely Fi ' whenever N} < ¢ < NL. ;. Apply Lemma
A.1 and the subsequent remarks with Z = B, p = f, k=g, P =S, ¥ = T with
its universal complete filtration }'.T 1 on B, and L = N, to obtain a representing
scheme (1 which is irreducible, smooth, and surjective over B of relative dimension
dim F1(k7) — |I\(N1)| — dim F1(k9). Repeat this s-many times to obtain at the top of
the tower a representing scheme C' for C. Then define a functor C’ : Sch/C' — Set in
the obvious way, so that its k-points are (S, S, T, Fr, Fs, Fs) with the same Schubert
conditions also for Fg,. Repeating the argument of C for C’, one obtains a representing
scheme C’ which is irreducible, smooth, and surjective over B of relative dimension

2dim FI(k7)* — 2dimF1(k9)" — 2> " [A(NP)].
p=1
Finally, define a functor D : Sch/C’" — Set which associates to Y the same data as C’
with the additional data of s-many complete filtrations {F2}5_; of V ® Oy, subject to
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the constraints that for b= 0, ..., f, the kernel of S — V @ Oy /F? is precisely .775 P and

the kernel of &' — V @ Oy /F?F is precisely .7-"5‘ "P \whenever K} <t < K} ,,. The points
D(k) correspond bijectively to the set we called Uk, 7.

Proposition A.2. Let D be the functor defined above. Then D is representable by a
scheme which we call Ux 7(V'), which is smooth, surjective, and irreducible over Ay 4
of relative dimension:

dimFI(V)* + Y “(IA(JP)] = 2]A(KP)| — 2]A(NP)]).
p=1
This proves (4) of Lemma 1.2.

Proof. Tt suffices to prove the assertions above for the functor D which associates to ¥
the same data as D, with the milder condition that for b =0, ..., f, the maps

]_—gslp —-V® Oy/fii) and ]_—bS/,p - Ve® OY/.FZ})

are 0, for then D is an open subfunctor of D.
The conditions of C’ imply that for each scheme Y over C', a =0, ...,g,andp =1, ..., s,

we have a canonical inclusion of bundles F, ? — .7’-—,;g P @.7-—,;9 "P whenever N? < b < N o
The cokernel of the inclusion is a bundle of rank 2b — a, which we denote .7-"[? P4 ]-"I;S P,

We may also realize this sum as the image of the map .7-",;9 P f‘bg Py ® Oy, so it is
naturally a subbundle of V' ® Oy. The maps

F? =V @Oy/Fry and 57— V@ Oy Fy
are both zero if and only if
FoP 4 FEP 5V @ Oy |F,

is zero. For each p = 1,..., s, we have a filtration of ¥ = S + &’ by f-many subbundles

]-'S’p + ]-'8 P Applylng Lemma A.1 s-many times, once for each such filtration,
we see that D is representable by an irreducible scheme D, which is surjective and
smooth over C’. A computation involving the dimension count in A.1 gives the relative
dimension of D over C’ to be:

dim FI(V)* — 2dim F1(k7)* — 203 [A(KP)[) + dim F1(k%)* + ) " [A(J7)].
p=1 p=1
Combining this with the relative dimension of C’ over B and the relative dimension of
B over Ay g4, one obtains the proposed number. O

Let Z and £ be as in Section 1.3. We would like Hz k. 7 to be a scheme over Uk 7
whose fiber over (S, S’, T, F) is the set of quadruples (G,G’, ¢, ¢’) where G,G" € F1(Q)*
and ¢ € Homz(V,Q, F,G), ¢ € Homz(V,Q, F,G’) are such that ker ¢ = S, ker ¢/ = 5’
Such a scheme exists provided the functor £ is representable, where £ associates to Y
over Ui 7 the same data as D above, with the additional data of 2s-many complete
filtrations {G}5_,, {g”’ 5_1 by subbundles of Q® Oy and two homomorphisms of vector
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bundles ¢, ¢’ : V ® Oy — Q ® Oy subject to the conditions ker ¢ = S, ker ¢ = &', and
the composite maps

FLVe0y %Qe0y »Qe0y/Gh

F-Veoy L Qeoy »Quoy/Gh

are zero fora=1,...,r, p=1,...,s.

Proposition A.3. Let £ : Sch/Ux 7 — Set be as above. Then & is represented by
a scheme Hz x 7 which is irreducible, smooth, and surjective over Ug g of relative
dimension

2(r — f)(n =)+ 2dimFI(Q)* + 2 ) _(IAL)] = [AUIP)| = IA(KP)]).
p=1

Proof. Virtually identical to [Bel06] Lemma A.5. O

APPENDIX B. A SHORT PROOF OF THE GEOMETRIC HORN CONJECTURE

Belkale [Bel06] proved, in a precise sense, that given an element (F,G) € FI(M)* x
F1(Q)*, which is chosen sufficiently generally, the induced flags on ker ¢ and M/ ker ¢
are themselves mutually sufficiently general, where ¢ is a general element in the space
Homy (M, @, F,G). Here “sufficiently general” means roughly that the flags are general
enough to perform intersection theoretic computations and to calculate the dimensions
of the vector spaces Homy (M, Q, F,G). To prove the Horn conjecture, we will require
a similar result on the mutual genericity of (F(ker ¢),G). We begin by reiterating the
results of Belkale.

Given M of dimension m, there are only finitely many s-tuples H of index sets in
[m], so by intersecting finitely many Zariski open subsets of F1(M)®, we obtain an open
subset 8 with the property that each s-tuple of flags F in 3 is such that for any s-tuple
of index sets H in [m], each of the same cardinality, the Schubert intersection Q4 (F)
is proper and transverse at every point. An element F of § is said to be generic for
intersection theory.

Similarly, given H, there is by Lemma 1.3 a nonempty, largest open subset O(M, Q, H)
of FI(M)* x F1(Q)® such that hdy is constant on this open set, say hdy = (D,e,€)
and such that Hy ¢ — FI(M)* x F1(Q)® is flat and surjective after base change to
O(M,Q,H).

Belkale defined a simultaneous choice of open subset Ayrg C FI(M)*® x FI(Q)*® for
every pair of nonzero vector spaces M and @ such that:

e The choice is “functorial for isomorphisms,” in the sense that if M — M’, Q —
Q' are vector spaces isomorphisms, then the induced isomorphism of varieties
FI(M)® x F1(Q)*® to FI(M')® x F1(Q')® sends Ajz,q isomorphically onto A .
In particular, Ays g is stable under the diagonal action of GL(M) x GL(Q) on
FI(M)* x FI(Q)*.

e Fixing M and Q, if (F,G) € Ay, then
G1. F and G are generic for intersection theory in M and () respectively.

G2. For any choice of H € (["_;:“m})s, we have (F,G) € O(M,Q,H).
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G3. For H as in G2, there is a nonempty open subset of Homy (M, Q,F,G)
such that for each ¢ in this open subset, if 0 < dimker¢ < m, then
(F(ker ¢), F(M/ ker ¢)) lies in Ayer ¢, 01/ ker -
Let Bys,g denote the subset of Ay g with the additional property:
G4. Same as G3, except that we require (F(ker ¢),G) to lie in Byer¢,q-

Proposition B.1. For a fized vector space Q@ # 0, there is a collection of nonempty
open subsets {Byr,g € FI(M)* x FI(Q)®} a0 with the properties G1 through G4.

Proof. The proof resembles that of Section 8.2 in [Bel06]. A slight difference occurs in
the “Nonemptiness” section. In Belkale’s proof, he shows that fixing a proper nonzero
subspace R of M, the map Hy ¢|r — FI(R)® x F1(M/R)® is dominant (for particularly
chosen H,€). We must show instead that the map Hy ¢|gp — FI(R)® x FI(Q)® is
dominant. To do this, take G in the open image of Hy ¢|r — F1(Q)®, and consider the
map:

(21) Hng‘(d)’g) — FI(R)S,

for some ¢ with ker ¢ = R such that the set of F with (¢, F,G) € Hy ¢ is nonempty. It
suffices to prove that (21) is dominant. This is seen by considering the actions of G**
on both the domain and codomain of (21), where G is the largest subgroup of GL(M)
which acts on R and acts trivially on M/R. The action of G** on F1(R)® is transitive,
and (21) is equivariant, so dominance (in fact surjectivity) follows. O

Following an idea sketched by Belkale in discussions, we now use Proposition 3.1 to
simplify his published proof of the Horn conjecture [Bel06].

Theorem B.2 (Geometric Horn). Let Z € ([Z])S be arbitrary. The following are equiv-
alent:
A. The product wz is nonzero in H*(Gr(r,n))
B. Forall0 < f <r and oall K € ([;])s such that wi is nonzero in H*(Gr(f,r)),
one has the inequality:

s [
(t%) SN n—r+KE—10,) — f(n—7) <0,

p=1a=1

Proof. (A)=-(B). Assume (A). Let £ be a general complete flag in the n-dimensional
space W. The intersection Q3(€) is nonempty, say V € Q3(€). Note that the intersec-
tion of cells is dense in the intersection of Schubert varieties for £ generic (see [Bel06]
Proposition 1.1 for a proof). Let K as in (B) be such that wig is nonzero. Then, the
intersection of Schubert varieties Qi (E(V)) C Gr(f,V) is nonempty of dimension at
least:
s s f

(22) dimGr(f,V) = codim(Qgr(EP(V))) = f(r—f) =Y. > (r— f+a— K

p=1 p=1a=1
Under the inclusion Gr(f, V) — Gr(f, W), we have:

(23) Qe(E(V)) € Qc(8),
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where L = T ?{5’ Since € is generic, the intersection £ (€) has by Kleiman transversality
its expected dimension:

s f
(24) fln=F) =) > (n—f+a—1Ip).
p=1a=1
By (23), the quantity in (22) is less than or equal to the quantity in (24). This rearranges
to the inequality of (B) O

Proof. (B)=(A). Assume (B) and furthermore assume that we have proven for all ' < r
~ / S /

and 7 in ([”_:,Jrr ]) that wz # 0 if forall 0 < g <" and all J € ([rg])s with w7 nonzero

in H*(Gr(g,7")) the inequality

S g
DY n—r+J—10) —gn—r) <0

p=1a=1

holds. The base case when 1’ = 1 is easy. For example, one may use the simple
description of the cohomology ring H*(Gr(1, N + 1)) as Z[h]/hN*! where h is the class
of a hyperplane in Gr(1, N + 1) = PV,

In the general case, let (F,G) € By, (see Proposition B.1), and let S be the kernel
of a general element of Homz(V, @, F,G). Suppose that S has dimension f and lies in
Schubert position K with respect to F. By Proposition 3.1, we have

(25) hl(A(V,Q,]-',Q,zS‘(I))) = hl(A(S,Q,f(S),g,ﬁ(i))),

where I? = I7.», — K& +a. An easy consequence of Proposition 1.1 is that (A) holds if
and only if the left hand side of (25) is zero. So it suffices to show the right hand side
of (25) is zero. Clearly this holds if f =dim .S = 0.

Assume now that f > 0. Let 0 < ¢ < fand J € ([g])s be such that the product w7y is
nonzero in H*(Gr(g, S)). Let T' € Gr(g, S) lie in the nonempty intersection Q% (F(S5));
here we use the fact that (F,G) € By and hence (F(S),G) € Bgg is generic. One
also has that T' € Qg _(F) € Gr(g, V). Since F is generic, the product w, is nonzero
in H*(Gr(g,)). The hypothesis (B) now gives the inequality

s g S g
0> ZZ(H_T+K§§ —I%pp) —g(n—r) :ZZ(R—T—i—Jg—I%)—g(n—T)
p=1a=1 Ja p=1a=1
This is precisely the inequality needed to apply the inductive hypothesis, so ws # 0 in
H*(Gr(f,n—r+ f)) By Proposition 1.1, there is a maximal nonempty open locus O in
F1(S)* x F1(Q)® of points (F',G') such that h'(A(S,Q,F',G',9(Z))) = 0. Note that O
contains Bgg - in particular contains (F(S),G) because h' is constant along Bg g. We
conclude that right hand side of (25) is 0. O
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