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Abstract. King, Tollu, and Toumazet in [KTT04] conjectured that stretching the
parameters of a Littlewood-Richardson coefficient of value 2 by a factor of N would
result in a coefficient of value N + 1. We prove a slight generalization of this by using
geometric methods and Schubert calculus.

0. Introduction

Given Young diagrams λ, µ, ν with at most r rows, the associated Littlewood-
Richardson number cνλµ computes the dimension of the space of SLr invariants of the
tensor product Vλ ⊗ Vµ ⊗ V ∗ν , where as usual Vλ denotes the irreducible polynomial
representation of GLr corresponding to λ. Given a whole number N , each row of the
Young diagrams λ, µ, ν can be stretched by a factor of N (so e.g. if N = 2, each row
becomes twice as long, etc) and one may ask how does the number P (N) = cNνNλNµ
change with N? Fulton conjectured (unpublished) and Knutson, Tao, and Woodward
later proved [KTW04] that if P (1) = 1, then P (N) = 1 for all N . This fact is related
to irredundancy of a certain set of inequalities appearing in Horn’s conjecture [Bel04a].

A natural next question would be what if P (1) = 2? It was given a correct conjectural
answer of P (N) = N + 1 by King, Tollu, and Toumazet in [KTT04] and was proven by
Ikenmeyer in [Ike12]. Ikenmeyer interprets cνλµ as the cardinality of the set of integral
hive flows on the honeycomb graph of r with borders prescribed by λ, µ, ν. He then
uses combinatorial and algorithmic techniques to count the hive flows and arrives at
the conjectured answer. We will not pursue his methods, although he thinks that they
should generalize, e.g. to the case P (1) = 3.

Instead we will prove the conjecture using the geometric methods established by
Belkale [Bel06,Bel07]. For this, it is helpful to recast the question as follows. Let s ≥ 3,
n > r be integers, and let λ1,..., λs be Young diagrams fitting in an r by n − r box
(equivalently, weights of G := SLr of level n− r). Then,

Theorem 0.1. Suppose
∑s

p=1 |λp| = r(n− r) (the “codimension condition”). If

dim(Vλ1 ⊗ ...⊗ Vλs)G = 2

then
dim(VNλ1 ⊗ ...⊗ VNλs)G = N + 1

for all integers N ≥ 1

Remark 0.1. This generalizes the conjecture of [KTT04] proven in [Ike12] to an arbitrary
number of weights. Indeed, suppose cνλµ = 2. Then in particular |λ|+|µ| = |ν|, for this is

the case whenever cνλµ 6= 0. Choose n large enough that λ, µ, ν each fit in an r× (n− r)
1
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box. Let ν∨ be the Young diagram with (ν∨)a = n − r − νr−a+1. One verifies that
VNν∨ ∼= V ∗Nν as GLr representations for any N ≥ 1, and that |λ|+ |µ|+ |ν∨| = r(n− r).
Thus, by Theorem 0.1 with s = 3, we have N + 1 = (VNλ⊗ VNµ⊗ VNν∨)G = cNνNλNµ. �

To prove Theorem 0.1, we further translate the question into one of the size of a
moduli spaceM, which can be described as the s-fold product of the space of complete
flags on an r-dimensional vector space V modulo an equivalence relation - the theorem
holds if and only if M is 1-dimensional (see Section 2.2). This is the technique used
by Belkale [Bel07] to prove Fulton’s conjecture. The moduli space under consideration
has an ample line bundle L with the property that the global sections of L⊗N can be
identified with the G invariants of VNλ1 ⊗ ...⊗ VNλs (really its dual). The idea is that
if M has dimension exceeding 1, then L will have a nonempty base locus Z. From the
properties of L, if F ∈M lies in Z, then a certain vector space H depending on F will
be nonzero. However, this H must be 0 whenever F consists of “general” flags. While
F itself cannot be taken to be general (for it must lie in Z), we can “trade” F for the
flags induced by F on a subspace of V . These flags will be general enough to allow
us to conclude that H must have been 0, a contradiction. That is, M must have had
dimension 1 all along. The “trading” process derives from techniques of Schofield [Sch92]
(see e.g. his Theorem 5.2), modified so that his Hom and Ext become our H0 and H1

of certain two-step complexes.
The author wishes to acknowledge many useful discussions with his thesis advisor

P. Belkale. In particular, I would like to thank him for pointing out the technique of
Schofield in connection to this problem and for showing me how to correct a significant
error in earlier versions of this paper.

0.1. Notation. Throughout k will be an algebraically closed field of characteristic 0.
The term “vector space” should be understood to mean finite dimensional over k. In
particular, V will have dimension r, M will have dimension m, Q will have dimension
n− r, and W ∼= M ⊕Q will of course have dimension n− r +m.

The quantity [n] for a positive integer n will denote the set of integers {1, ..., n}.
Italicized capital letters will denote index sets. An index set in [n] is a subset of [n]
which is written in ascending order. If the index set I in [n] has cardinality r, we will

say that I ∈
(

[n]
r

)
. It is typical to associate to an index set I ∈

(
[n]
r

)
a Young diagram

λ(I), whose ath row is given by the equation λa = n− r+ a− Ia. Finally, the lowercase
letter s will always denote a fixed positive integer greater than or equal to 3.

1. Preliminaries

1.1. Schubert Calculus. The Grassmannian Gr(m,W ) of m-dimensional subspaces of
W is a smooth, projective variety of dimensionm(n−r). It has distinguished subvarieties
called Schubert varieties, each of which corresponds to a choice of full flag E• on W and

a choice of index set H ∈
(

[n−r+m]
m

)
. Explicitly, for such an E• and H, the Schubert

variety is defined as

ΩH(E•) = {M ∈ Gr(m,W )| dim(M ∩ Ea) ≥ b whenever Hb ≤ a < Hb+1, b = 1, ...,m}.
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It has codimension
∑r

a=1 n − r + a − Ha. Each Schubert variety has a distinguished
Zariski open subset, isomorphic to affine space, called the Schubert cell. It is defined as

Ω◦H(E•) = {M ∈ Gr(m,W )|dim(M ∩ Ea) = b iff Hb ≤ a < Hb+1, b = 1, ...,m}

For fixed E•, the Schubert cells over all choices of H disjointly cover the Grassmannian.
As a result of this cell decomposition, the classes ωH of the Schubert varieties form an
additive basis for the integral cohomology ring H∗(Gr(m,W ),Z).

We will be interested mainly in the intersections of s-many Schubert cells. Let E ∈
Fl(W )s have entries Ep• for p = 1, ..., s. Given an s-tuple of index sets H ∈

(
[n−r+m]

m

)s
,

we make the notational convention

Ω◦H(E) :=
s⋂

p=1

Ω◦Hp(Ej•)

and correspondingly

ωH :=
s∏

p=1

ωHp .

The latter is nonzero if and only if the former is nonempty for general choice of E in
Fl(W )s. If M ∈ Ω◦H(E), we will say that M is in Schubert position H with respect to E ,
regardless of genericity of E .

One may also detect nonzeroness of a Schubert product in another way. The idea
comes from Kleiman transversality. The tangent space to the Schubert intersection
Ω◦H(E) at a point M is canonically identified with the vector space:

{φ ∈ Hom(M,W/M)|φ(E(M)pa) ⊆ E(W/M)p
Hp
a−a

for a = 1, ...,m, p = 1, ..., s},

where E(M) (resp. E(W/M)) indicates the s-tuple of flags induced on M (resp. W/M)
by E . If the product of Schubert classes is nonzero, then for sufficiently general F and
M in the intersection Ω◦H(E), the intersection is transverse at M . That is, the tangent
space at M has its expected dimension m(n− r)−

∑s
p=1

∑m
a=1(n− r + a−Hp

a).
A strong converse to this is also true. To state it, we define a generalized tangent

space. For any m-dimensional M (not a priori a subspace of W ) and n− r dimensional
Q, with s-tuples of flags F ∈ Fl(M)s and G ∈ Fl(Q)s, we define

HomH(M,Q,F ,G) = {φ ∈ Hom(M,Q)|φ(F pa ) ⊆ Gp
Hp
a−a

for a = 1, ...,m, p = 1, ..., s}.

The next proposition is Proposition 2.3 in [Bel06].

Proposition 1.1. ωH 6= 0 if and only if for general (F ,G) ∈ Fl(M)s×Fl(Q)s, one has

(1) dim HomH(M,Q,F ,G) = m(n− r)−
s∑

p=1

m∑
a=1

(n− r + a−Hp
a).

1.2. Parabolic Vector Spaces. A parabolic vector space is a 3-tuple (M,F , λ) con-
sisting of a vector space M of dimension m, an element F of Fl(M)s, and an s-tuple
λ of nonincreasing sequences of real numbers with each sequence of having length m.
Given an e-dimensional subspace R of M whose Schubert position in M with respect
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to F is given by the s-tuple of index sets E ∈
(

[m]
e

)
, we define the parabolic slope of R

to be:

(2) µR = (1/e)
s∑

p=1

∑
a∈Ep

λpa

(note the unfortunate change of the meaning of E from Section 1.1). A parabolic vector
space is said to be semistable if for every subspace R of M , one has µR ≤ µM .

Given M and F as above, an integer n − r > 0 and an s-tuple of index sets H ∈(
[n−r+m]

m

)s
, we may associate a parabolic vector space

(M,F , n− r, λ(H)) where λ(H)pa = n− r + a−Hp
a .

Since the parabolic slope of a subspace depends only on its Schubert position, we define
the slope µE of a Schubert position E by the same formula (2).

1.3. Parameter Spaces. The parameter spaces below will facilitate the key dimension

calculations in the proof of Theorem 0.1. For E in
(

[m]
e

)s
, as in [Bel06] we introduce

the “universal intersection” UE(M) whose points are pairs (R,F), where R is an e-
dimensional subspace of M in Schubert position E with respect to F ∈ Fl(M)s. Also,
we have a parameter space lying over UE , denoted HH,E(M,Q), whose fiber over (R,F )
is the set of pairs (G, φ), where G ∈ Fl(Q)s and φ ∈ HomH(M,Q,F ,G) is such that
kerφ = R. The vector spaces M and Q will often be omitted from the notation.

Let V have dimension r. Fix integers 0 ≤ g < f < r. Let

(3) I ∈
(

[n]

r

)s
,K ∈

(
[r]

f

)s
,J ∈

(
K
g

)s
,L ∈

(
[n]

f

)s
,N ∈

(
[f ]

g

)s
,

where the first three are chosen arbitrarily, the fourth is given by Lpa = Ip
Kp
a

for a =

1, ..., f , and the fifth is determined by the rule Jpa = Kp
Np
a

for a = 1, ..., g. Let Af,f,g(V )

be the scheme over Spec(k) whose closed points are triples of the form (S, S′, T ) where S
and S′ are f -dimensional subspaces of V that intersect in a g-dimensional space T . Let
UK,J (V ) be the scheme over Af,f,g whose fiber over (S, S′, T ) is the set of all F ∈ Fl(V )s

such that S, S′ ∈ Ω◦K(F) and T ∈ Ω◦J (F).
Also, let HI,K,J (V,Q) be the scheme over UK,J whose fiber over a point (S, S′, T,F)

is the set of quadruples (G,G′, φ, φ′) where G,G′ ∈ Fl(Q)s, φ ∈ HomI(V,Q,F ,G), φ′ ∈
HomI(V,Q,F ,G′), and φ, φ′ are such that kerφ = S, kerφ′ = S′. The properties of
these schemes, including their existence, is proven in Appendix A. For convenience, we
summarize the results below.

Lemma 1.2. We will use the phrase “X is irreducible over Y ” for an irreducible scheme
Y to mean that for all irreducible schemes Z over Y , the scheme X×Y Z is irreducible.
With this terminology, we have:

(1) UE(M) is surjective, smooth, and irreducible over Gr(e,M) of relative dimen-
sion dim Fl(M)s −

∑s
p=1 |λ(Ep)|.

(2) HH,E(M,Q) is surjective, smooth, and irreducible over UE(M) of relative di-
mension

(m− e)(n− r) + dim Fl(Q)s +
∑
p∈S

e∑
a=1

(n− r + Epa −H
p
Epa

)−
∑
p∈S
|λ(Hp)|.
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(3) Af,f,g is irreducible and smooth over Spec(k) of dimension 2(f − g)(r − f) +
g(r − g).

(4) UK,J (V ) is surjective, smooth, and irreducible over Af,f,g of relative dimension

dim Fl(V )s +
s∑

p=1

|λ(Jp)| − 2
s∑

p=1

|λ(Kp)| − 2
s∑

p=1

|λ(Np)|.

(5) HI,K,J (V,Q) is surjective, smooth, and irreducible over UK,J (V ) of relative
dimension

2(r − f)(n− r) + dim Fl(Q)2s + 2

s∑
p=1

(|λ(Lp)| − |λ(Ip)| − |λ(Kp)|).

1.4. Hom Data. We define “generic” configurations for morphisms M → Q of vector
spaces equipped with s-tuples of complete flags. The first such configuration will be
called the HomH data. It is the set theoretic function hdH on Fl(M)s × Fl(Q)s which
assigns to a pair (F ,G) the triple (D, e, E), whereD is the rank of HomH(M,Q,F ,G), e is
the minimum of the dimensions of kerφ as φ ranges over HomH(M,Q,F ,G), and E is the
Schubert position of kerφ in M with respect to F for all φ in some dense open subset of
HomH(M,Q,F ,G). Such an E exists, as one sees by stratifying HomH(M,Q,F ,G) into
disjoint subschemes indexed by the Schubert position of the kernel. These subschemes
are constructible, cover HomH(M,Q,F ,G), and there are only finitely many of them.
Hence exactly one contains an open set.

Similarly, we define the Hom′H data to be the set theoretic function hd′H on Fl(M)s×
Fl(Q)s × Fl(Q)s which assigns to (F ,G1,G2) the octuple (D1, D2, e1, e2, t, E1, E2, T )
where

• Di = dim HomH(M,Q,F ,Gi).
• ei = min(dim(kerφi)) where the min is taken over φi in HomH(M,Q,F ,Gi).
• t = min(dim(kerφ1∩kerφ2)) where the min is taken over the open subset of pairs

(φ1, φ2) in HomH(M,Q,F ,G1)×HomH(M,Q,F ,G2) such that dim(kerφi) = ei

for i = 1, 2.

• E i is the unique element of
([m]
ei

)s
such that a nonempty open subset of φi in

HomH(M,Q,F ,Gi) satisfies kerφi ∈ Ω◦Ei(F) ⊆ Gr(ei,M).

• T is the unique element in
(

[m]
t

)s
such that a nonempty open subset of (φ1, φ2)

in HomH(M,Q,F ,G1)×HomH(M,Q,F ,G2) satisfies kerφ1∩kerφ2 ∈ Ω◦T (F) ⊆
Gr(t,M).

Definition 1.1. Let (F ,G) ∈ Fl(M)s×Fl(Q)s and suppose that hdH(F ,G) = (D, e, E).
We will say that φ in HomH(M,Q,F ,G) is a general element if dim kerφ = e and
kerφ ∈ Ω◦E(F). Similarly, let (F ,G1,G2) ∈ Fl(M)s × Fl(Q)s × Fl(Q)s and suppose that

hd′H(F ,G1,G2) = (D1, D2, e1, e2, t, E1, E2, T ).

We will say that (φ1, φ2) in HomH(M,Q,F ,G1) × HomH(M,Q,F ,G2) is a general el-
ement if dim(kerφi) = ei, dim(kerφ1 ∩ kerφ2) = t, kerφi ∈ Ω◦Ei(F), kerφ1 ∩ kerφ2 ∈
Ω◦T (F). In both cases, the set of general elements is nonempty and open.

Take a closed subvariety Z of Fl(M)s and closed subvarieties Y1, Y2 of Fl(Q)s. The
following lemma says that there is a generic Hom′H data over Z × Y1 × Y2. It is easy to
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verify using the fact that there are only finitely many possibilities for Hom′H data (Di

must be one of 0, 1, ...,m(n− r), ei must be one of 0, 1, ...,m, etc.).

Lemma 1.3. There is a dense open set U ⊆ Z×Y1×Y2 such that hd′H is constant over
(F ,G1,G2) in U . Moreover, if Y1 = Y2, one has D1 = D2, e1 = e2, E1 = E2, and in this
case hdH = (D1, e1, E1) for all (F ,G) in the image of either projection of Z × Y1 × Y1

to Z × Y1.

2. GIT

This section is devoted to translating Theorem 0.1 into a question of geometry, specif-
ically of the dimension of a certain moduli space. The expert reader may wish to skip
ahead to Theorem 2.3. The steps leading up to the theorem are standard, but the
author has not seen them assembled to his satisfaction elsewhere, thus their inclusion
below.

2.1. Borel-Weil Theory for SL. Suppose given an s-tuple of dominant weights λ1, ..., λs

for SLr = SL(V ). View λp as a Young diagram with at most r − 1-many nonzero rows
and suppose the distinct column lengths of λp are

r > dp1 > dp2 > ... > dpC(λp) > 0.

Let bpi be the number of columns of λp of length dpi . Finally, let Xp be the partial flag
variety consisting of flags

kr ⊃ Fdp1 ⊃ Fdp2 ⊃ ... ⊃ FdpC(λp)
⊃ 0,

where subscripts denote dimension. One has a sequence of SLr-equivariant embeddings.

Xp →
C(λp)∏
i=1

Gr(dpi , r)
Plücker−−−−−→

C(λp)∏
i=1

P(∧d
p
i kr)

V eronese−−−−−−→
C(λp)∏
i=1

P(Symbpi (∧d
p
i kr))

Segre−−−→ P(⊗C(λp)
i=1 Symbpi (∧d

p
i kr)) := P(λp).

Let Lp denote the pullback of OP(λp)(1) to Xp. Then Lp is an SLr-equivariant line
bundle on Xp. The quotient

H0(P(λp),OP(λp)(1)) � H0(Xp,Lp)
is isomorphic in the category of SLr representations to the quotient

(⊗C(λp)
i=1 Symbpi (∧d

p
i kr))∗ � V ∗λp .

See Chapter 9 of [Ful97] for full details.
If we instead start with Nλp, the dpi do not change, while the bpi are multiplied by

N . Let W p
i = ∧d

p
i kr and note that the map Pic(P(SymNbpiW p

i ))→ Pic(P(W p
i )) induced

by the Veronese embedding is multiplication by Nbpi (when both sides are identified
with Z by O(1)). Since the pullback of O(1) under the Segre embedding is the box
tensor product of O(1) on the factors, it follows that the pullback of OP(Nλp)(1) to Xp

is (Lp)⊗N . Therefore, H0(Xp, (Lp)⊗N ) ∼= V ∗Nλp as representations.

Let X :=
∏s
p=1X

p, and define the SLr-equivariant line bundle L̃λ := �s
p=1Lp on X.

It now follows from the Künneth formula that the space of sections of L̃⊗Nλ is isomorphic
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as a representation to ⊗sp=1V
∗
Nλp . Note that L̃λ is the pullback of the box tensor product

of O(1)’s under the embedding of X into
∏s
p=1 P(λp), so in particular is very ample. To

summarize,

Proposition 2.1. Let λ1, ..., λs be dominant weights for SLr. There exists a product
X of s-many partial flag varieties and a very ample line bundle L̃λ on X such that
H0(L̃⊗Nλ ) is isomorphic as an SLr representation to the tensor product of the represen-
tations V ∗Nλp.

2.2. The Conjecture Translated into GIT. In the language of GIT, the SLr-
equivariant line bundle L̃λ on X is a linearization of the SLr action on X. Given a
point x = (F 1

• , ..., F
s
• ) of X, the Hilbert-Mumford criterion equates the semistability of

x in the sense of GIT to the validity of a system of inequalities involving the partial flags
F p• (see [Ful98]). These inequalities turn out to be precisely the ones defining parabolic
semistability. More accurately, the point x is semistable if and only if some (equivalently,
any) point F in the fiber over x in Fl(V )s is parabolic semistable, where stability is de-
fined by the weights λp. Let (Fl(V )s)SS denote the parabolic semistable locus on Fl(V )s.
The proposition below now follows from standard GIT - see e.g. [New78], [MFK94].

Proposition 2.2. There exists a projective, normal quotient M of X by the action of
SLr, and a surjective morphism π : (Fl(V )s)SS →M.

Now let I ∈
(

[n]
r

)s
be such that λ(I) satisfies the codimension condition of Theorem

0.1. Let λ̃(I) denote the s-tuple of Young diagrams obtained from λ(I) by truncating
each row of λ(I)p by the amount λ(I)pr ; the dominant weights of SLr corresponding to

λ(I) and λ̃(I) are the same. Defining X and L̃I := L̃λ̃(I) as in Section 2.1, we obtain

again a moduli space MI . In addition, the hypothesis on I ensures by the theory of
Kempf [Pau96] that the line bundle L̃I descends to MI .

Theorem 2.3. Let I ∈
(

[n]
r

)s
be such that

(4)

s∑
p=1

r∑
a=1

(n− r + a− Ipa) = r(n− r).

Then there exists MI and π as in Proposition 2.2 and an ample line-bundle LI on MI
such that π∗LI = L̃I |(Fl(V )s)SS . Moreover, the pullback

π∗ : H0(MI ,L⊗NI )→ H0((Fl(V )s)SS , L̃⊗NI |(Fl(V )s)SS )

has image given by the subspace H0(X, L̃⊗NI )G of H0(Fl(V )s, L̃⊗NI |Fl(V )s) (note: in-
variant sections on the semistable locus extend uniquely to global invariant sections, see
Lemma 4.15 of [NR93]). That is, by Proposition 2.1,

H0(MI ,L⊗NI ) ∼= (V ∗Nλ1 ⊗ ...⊗ V
∗
Nλs)

SLr .

Corollary 2.4. Theorem 0.1 is equivalent to the following statement. If I, MI , and
LI are as in Theorem 2.3, and h0(MI ,LI) = 2, then h0(MI ,L⊗NI ) = N+1 for N ≥ 1.

The degree of the Hilbert polynomial of an ample line bundle on a projective variety
is the dimension of the variety, so by Corollary 2.4, MI has dimension 1 if Theorem
0.1 holds. Conversely, suppose dimMI = 1 and h0(MI ,LI) = 2. Then, since MI is
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dominated by the rational variety (Fl(V )s)SS ,MI itself is rational by Lüroth’s theorem.
Therefore,MI ∼= P1 and LI must in turn be O(1) (note: we’ve used here the normality
ofMI). Clearly, h0(P1,O(N)) = N + 1, so by Corollary 2.4, Theorem 0.1 holds. Thus,
it suffices to prove the following theorem.

Theorem 2.5. (Equivalent to Theorem 0.1) Suppose I ∈
(

[n]
r

)s
is such that (4) holds

and that h0(MI ,LI) = 2. ThenMI is 1-dimensional. In this case, the argument above
gives (MI ,LI) ∼= (P1,O(1)).

2.3. Theta Sections of LI. Given G ∈ Fl(Q)s, Belkale [Bel04b] constructs a sec-
tion θ(Q,G) in H0(MI ,LI). In his construction, there is an open dense subset of

(Fl(Q)s)h
0(MI ,LI) such that for G1, ...,Gh0 in this subset, the set {θ(Q,G1), ..., θ(Q,Gh0)}

gives a basis of H0(MI ,LI). For our purposes, the only other important property of
these sections is the vanishing loci of their pullbacks to Fl(V )s. Denoting the pullback
also by θ(Q,G), we have that θ(Q,G) vanishes at F if and only if HomI(V,Q,F ,G) 6= 0.

3. Two-Step Complexes

The proof of Theorem 2.5 turns on dimension counts of spaces HomI(V,Q,F ,G).
If MI exceeds the dimension predicted, there will be a nonempty closed locus Z in
(Fl(V )s)SS where HomI(V,Q,F ,G) is nonzero for general choice of (F ,G) ∈ Z×Fl(Q)s

(note that HomI(V,Q,F ,G) is the “certain vector space H depending on F” of the
introduction). The dimension counting techniques below will expose this as a contra-
diction.

To better organize our computations, we introduce two-step complexes. For flags
F• ∈ Fl(M), G• ∈ Fl(Q), and a nondecreasing sequence of nonnegative integers

θ = (θ1 ≤ θ2 ≤ ... ≤ θm ≤ n− r),
define

Pθ(F•, G•) := {ψ ∈ Hom(M,Q)|ψ(Fa) ⊆ Gθa for a = 1, ...,m}.
It is clear that dimPθ =

∑m
a=1 θa. If F is an s-tuple of flags on M , G likewise on Q,

and ϑ an s-tuple of nondecreasing sequences as above, we define the two-step complex:

(5) A(M,Q,F ,G, ϑ) := (0→ Hom(M,Q)
γ−→ ⊕sp=1

Hom(M,Q)

Pθp(F
p
• , G

p
•)
→ 0)

We denote

H0(A(M,Q,F ,G, ϑ)) = ker(γ) and H1(A(M,Q,F ,G, ϑ)) = coker(γ),

with the corresponding lowercase h0 and h1 for the dimensions of these, as usual. We
also define the Euler characteristic χ = h0 − h1, which is the same as the difference of
dimensions between the domain and codomain of γ. One easily computes:

χ(Å(M,Q,F ,G, ϑ)) = m(n− r)−
∑
p∈S

m∑
a=1

(n− r − θpa).

For an s-tuple of index sets H, let us define s-tuples of nondecreasing sequences ϑ(H)
by the prescription θpa = Hp

a − a. In this case,

(6) H0(A(M,Q,F ,G, ϑ(H))) = HomH(M,Q,F ,G).
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Let R be an e-dimensional subspace of M in Schubert position E with respect to the
flags F . The natural restriction map ρ : Hom(M,Q)→ Hom(R,Q) is such that:

ρ(Pθ(Hp)(F
p
• , G

p
•)) = Pθ(Y p)(F

p(R)•, G
p
•),

where Y ∈
(

[n−r+e]
e

)s
is given by

(7) Y p
a = Hp

Epa
− Epa + a for a = 1, ..., e, p = 1, ..., s.

If C = A(M,Q,F ,G, ϑ(H)) and C(R) = A(R,Q,F(R),G, ϑ(Y)), the above shows that ρ
induces a surjective map of complexes ρ : C � C(R). From this, we obtain the following
useful proposition. It says roughly that if F is arbitrary, and G is chosen in general
position with respect to F , then the dimension of HomH(M,Q,F ,G) (the quantity of
interest) is controlled by the dimension of HomY(R,Q,F(R),G), where R is a certain
subspace of M .

Proposition 3.1. Fix F ∈ Fl(M)s. Let O = OF ,H be an open subset of Fl(Q)s such
that hdH(F ,G) = (D, e, E) is constant over G ∈ O and such that the morphism

(8) HH,E |O = HH,E ×Fl(M)s×Fl(Q)s ({F} ×O)→ {F} ×O

is flat and surjective. A nonempty such O exists by Lemma 1.3 and generic flatness.
If G is in O and ψ is a general element of HomH(M,Q,F ,G) with kernel R, then the
restriction ρ induces an isomorphism H1(C)→̃H1(C(R)).

Proof. Recall the parameter spaces of Section 1.3. We have by Lemma 1.2 that HH,E
is surjective and smooth over UE of relative dimension:

(9) rel dim(HH,E → UE) = dim Fl(Q)s + χ(C)− χ(C(R)).

Under the natural projection HH,E → Fl(M)s×Fl(Q)s, the fiber over a point (F ,G′) of
{F} ×O is a dense open subset (by choice of E) of HomH(M,Q,F ,G′). In particular,
the fibers are irreducible. Since flat maps are open, it follows that HH,E |O itself is
irreducible and that the fiber over (F ,G) has dimension dim HH,E |O− dim Fl(Q)s. But
we know from (6) that the dimension of this fiber equals h0(C), so:

(10) h0(C) = dim HH,E |O − dim Fl(Q)s.

Let UF denote the open, irreducible image of HH,E |O in

(11) Ω◦E(F) = UE ×Fl(V )s {F}.

By smoothness of HH,E over UE , the scheme HH,E×UE UF is smooth over UF of relative
dimension given by (9). Since HH,E |O is an open subset of HH,E ×UE UF , we have

(12) dim HH,E |O = dimUF + dim Fl(Q)s + χ(C)− χ(C(R)).

By the description of UF as an open subset of the Schubert intersection (11), we can
combine (10) and (12) to obtain:

(13) h0(C) ≤ dim(Ω◦E(F) at R) + χ(C)− χ(C(R)),

where the first summand above should be understood as the dimension of the largest
irreducible component of Ω◦E(F) passing through R.
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The first summand in (13) is bounded by the dimension of the Zariski tangent space
to Ω◦E(F) at R, which is given by

HomE(R,M/R,F(R),F(M/R)).

The chosen map ψ : M → Q induces an injection:

(14) HomE(R,M/R,F(R),F(M/R)) ↪→ HomY(R,Q,F(R),G),

where Y is as in (7). It is easy to see that

(15) HomY(R,Q,F(R),G) = H0(C(R)).

Thus, it follows from (13) and (14) that

h0(C) ≤ h0(C(R)) + χ(C)− χ(C(R)).

This rearranges to the inequality h1(C) ≤ h1(C(R)). But ρ : H1(C) → H1(C(R)) is
surjective by the Snake Lemma, so the proposition follows. �

The reader may wish to jump now to Appendix B. The proof there of the Horn
conjecture uses Proposition 3.1 in a straightforward way. In that regard, it serves as a
nice warm-up for the more complicated argument of Section 5.

4. Outline of the Proof of Theorem 2.5

The argument in Section 5 runs roughly as follows. We assume that Theorem 2.5
is false, i.e. that MI has dimension at least 2. Then, LI has a base locus, which
we can lift by π to Fl(V )s. Take an irreducible component Z which meets the open,
semistable part of Fl(V )s. Then, for general (F ,G) in Z ×Fl(Q)s, it is easy to see that
HomI(V,Q,F ,G) 6= 0 (Lemma 5.1). This will end up being contradicted.

Using the hypothesis H0(LI) = 2, we find (Proposition 5.2) that Z is dominated by
HI,K,J for a certain choice of K,J . Choose a general point F in Z and a general point
(F ,G,G′, φ, φ′) in HI,K,J over F . Set S = kerφ, S′ = kerφ′, T = S ∩ S′.

The goal is to show that HomI(V,Q,F ,G) = 0. The quantity HomI is computable
when the flags are generic (cf. [Bel06]). Since F is in Z, genericity cannot be assumed.
However, Proposition 3.1 gives a link between Hom for V with flags F and G to Hom
for S with flags F(S) and G. It is more convenient to express the link in terms of H1’s,
but these relate directly to the Hom’s in that they indicate their deviations from the
expected value. Specifically, Proposition 3.1 applied to φ tells us that:

H1(A(V,Q,F ,G, ϑ(I))) ∼= H1(A(S,Q,F(S),G, ϑ(Ĩ))).

Again, if (F(S),G) was general, the right hand side would be computable, in fact, zero by
Horn’s conjecture. But F(S) is required to have a subspace T of S in a certain Schubert
position, so it cannot be assumed generic. However, a variant of Horn’s conjecture is
proven in Section 6, for which (F(S),G) is general enough.

We conclude that the right hand side of the above equation is 0. Hence, the left
hand side is 0 and HomI(V,Q,F ,G) has its expected dimension. A consequence of the
codimension condition on I is that the expected dimension is 0. Contradiction.
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5. Proof of Theorem 2.5

Assume I satisfies the hypotheses of Theorem 2.5 and suppose to the contrary that
dimMI ≥ 2. Since LI is ample andMI is projective and normal, it follows that there
is a nonempty base locus Z ′ ofMI where all sections of LI vanish. Fix once and for all
an irreducible component of the preimage of Z ′ in (Fl(V )s)SS and take its closure Z in
Fl(V )s. Since Z contains semistable points, there is a Zariski open subset UZ such that
for all F in UZ , the parabolic vector space (V,F , n− r, λ(I)) is semistable. Let UFl(Q)s

be the open subset of Fl(Q)s such that θ(Q,G) (see Section 2.3) is not the zero section
of LI for any G in UFl(Q)s . We establish the statement to be contradicted.

Lemma 5.1. If (F ,G) ∈ UZ × UFl(Q)s, the vector space HomI(V,Q,F ,G) is nonzero.

Proof. The divisor of Fl(V )s associated to θ(Q,G) is

DG = {F ′ ∈ Fl(V )s|HomI(V,Q,F ′,G) 6= 0}
Since F ∈ UZ maps into the base locus of LI , every such divisor passes through F . �

By Lemma 1.3 and generic flatness, there is a largest nonempty open subset Ū
of Z × Fl(Q)s × Fl(Q)s over which the Hom′I data is constant, say hd′I(F ,G,G′) =
(D, f, g,K,J ) for all (F ,G,G′) in Ū , and such that HI,K,J |Ū → Ū is flat and surjective.
Note by Lemma 5.1, we have strict inequality f < r.

Proposition 5.2. The morphism

(16) HI,K,J → Fl(V )s × Fl(Q)s × Fl(Q)s

factors through a dominant map pr to Z × Fl(Q)s × Fl(Q)s.

Proof. Clearly by construction the image of the map (16) contains a dense open subset
of Z × Fl(Q)s × Fl(Q)s (namely Ū). To prove the proposition, it suffices to show that
the image of the projection pr1 : HI,K,J → Fl(V )s lies in Z.

Let B denote the image of pr in Fl(V )s×Fl(Q)s×Fl(Q)s. Since in particular, Ū ⊂ B,
we have that B dominates Fl(Q)s ×Fl(Q)s. Thus, the general element (F ,G,G′) ∈ B is
such that θ(Q,G) and θ(Q,G′) form a basis for H0(LI). If (φ, φ′) is any point of HI,K,J
over (F ,G,G′), then rkφ = rkφ′ = r − f > 0. It follows that θ(Q,G), θ(Q,G′) vanish at
F . So F is in some component of the inverse image of Z ′ in Fl(V )s. In sum we have:

• The image of pr1 contains a dense open subset of Z.
• The image of pr1 lies in the inverse image of Z ′ in Fl(V )s.
• The image of pr1 is irreducible (since HI,K,J is).

It follows that pr1(HI,K,J ) ⊆ Z. �

Since pr is dominant (5.2), we may let W ⊆ Z×Fl(Q)s×Fl(Q)s be a nonempty open
subset such that

(1) HI,K,J is flat and surjective over W .
(2) If (F ,G,G′) ∈W , then F is semistable with respect to I.

Pick a general point (F ,G,G′, φ, φ′) in HI,K,J whose image lies in W , with S = kerφ,
S′ = kerφ′, and T = S ∩ S′. Then, by property (1) of W and Proposition 3.1, we have:

(17) H1(A(V,Q,F ,G, ϑ(I))) ∼= H1(A(S,Q,F(S),G, ϑ(Ĩ))),
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where Ĩ is given by Ĩpa = Ip
Kp
a
−Kp

a + a. By Proposition 6.1, the induced flags (F(S),G)

are “general enough” for application of Proposition 6.2. Moreover, the inequalities of
Proposition 6.2 follow from property (2) of W . Therefore, the right hand side of (17)
is zero. We conclude that HomI(V,Q,F ,G) has its expected dimension, which is zero,
since I is assumed to satisfy the codimension condition (4). So by 5.1, we have arrived
at a contradiction. QED.

6. Vanishing of H1 for S

In this section, we will prove the propositions needed in the last part of Section
5 to show that H1(A(S,Q,F(S),G, ϑ(Ĩ))) = 0. To do this, we need to know that
if (F ,G,G′, φ, φ′) is general in HI,K,J , the flags (F(kerφ),G) ∈ Fl(kerφ)s × Fl(Q)s

are “as general as possible” with respect to one another, given the condition that the
induced flags on kerφ will always have subspace of kerφ in Schubert position N (namely
kerφ ∩ kerφ′). To this end, fix some S ∈ Gr(f, V ). Define ZS,N ⊆ Fl(S)s to be the set
of flags FS such that Ω◦N (FS) is nonempty. Then, ZS,N is locally closed and irreducible,
as it is the image of UN (S) in Fl(S)s. The next proposition proves the statement about
induced flags being “as general as possible.” See Section 1.3 for definitions. Note that
a vertical bar and a subscript following a parameter space - for example, “HI,K,J |S” -
denotes the fiber over the last subscript, as usual.

Proposition 6.1. The map HI,K,J |S → ZS,N × Fl(Q)s : (F ,G,G′, φ, φ′) 7→ (F(S),G)
is dominant.

Proof. We have a map HI,K,J |S → (HI,K(V )|S)|Z × Hom(V,Q) which sends the point
(F ,G,G′, φ, φ′) to (F ,G, φ, φ′) (Proposition 5.2 guarantees that F ∈ Z). Let U denote
the image. Now by choice of K, the map U → Fl(Q)s is dominant. Fix G in the image.
To prove the proposition, it suffices to show that U|G → ZS,N is dominant.

Suppose (F ,G, φ, φ′) ∈ U|G is a point, with say S′ = kerφ′, T = S ∩ S′. Let GS,S′,T

be the largest subgroup of GL(V ) which acts on S, S′, and T , and acts trivially on
V/S. Suppose ~g ∈ G×sS,S′,T . Then we observe that φ ∈ HomI(V,Q,~gF ,G) since G acts

trivially on V/S, and that S, S′ ∈ Ω◦K(~gF), T ∈ Ω◦J (~gF). Finally, we note that given
a homomorphism φ′ with kerφ′ = S′ ∈ Ω◦K(~gF), one can construct G′ ∈ Fl(Q)s so
that φ′ ∈ HomI(V,Q,~gF ,G′) (this is how the moduli space HI,K is built over UK and
similarly HI,K,J over UK,J ). We conclude that (~gF ,G, φ, φ′) ∈ U|G , which is to say

that G×sS,S′,T acts on U|G , and this action restricts to (U|G)|T .

We remark that (U|G)|T is nonempty for any g-dimensional subspace T of S. One
can see this by using the action on U|G of the stabilizer group HS of S in GL(V ) given
by h · (F ,G, φ, φ′) := ({hF pa }sp=1,G, φ ◦h−1, φ′ ◦h−1). This takes a subspace T ∈ Ω◦J (F)

to T ′ = hT ∈ Ω◦J (hF), and any such T ′ can be realized as hT for suitable h ∈ H. Thus,
we have reduced the problem to showing (U|G)|T → ZS,T,N is dominant for all T (see
below the proof for the definition of ZS,T,N ).

Note that G×sS,S′,T acts by restriction to a subgroup of GL(S)×s on ZS,T,N . As can be

seen with a basis argument, this action is transitive, and the map (U|G)|T → ZS,T,N is
equivariant with respect to the above actions. The desired dominance follows. �
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For an f -dimensional vector space S, a g-dimensional subspace T , and a Schubert

position N ∈
(

[f ]
g

)s
, one has an irreducible, locally closed subvariety of Fl(S)s given by:

ZS,T,N = {FS ∈ Fl(S)s|T ∈ Ω◦N (FS)}.

If g = 0, define ZS,T,N = Fl(S)s. The next proposition and its proof are variants on the
formulation of the Horn conjecture and its proof that appears in Appendix B.

Proposition 6.2. Let S be an f -dimensional vector space with f ≤ r, T a g-dimensional

subspace, Q an (n − r)-dimensional vector space, N ∈
(

[f ]
g

)s
a Schubert position in S,

and (FS ,G) a general element of ZS,T,N ×Fl(Q)s (see Lemma 1.3). Let Ĩ ∈
([n−r+f ]

f

)s
.

Suppose for every nonzero subspace R of S, one has the inequality:∑
p∈S

dimR∑
a=1

(n− r +Xp
a − Ĩ

p
Xp
a
) ≤ dim(R)(n− r),

where X is the Schubert position of R in S with respect to FS. Then the vector space
H1(A(S,Q,FS ,G, ϑ(Ĩ))) is zero.

Proof. We proceed by induction on the dimension f of S. If f = 1, then ZS,T,N = pt,

and G is a general element of Fl(Q)s. In this case, H0(A(S,Q,FS ,G, ϑ(Ĩ))) is the space
of all φ : S → Q such that Im(φ) is contained in

⋂
p∈S GĨp−1. Since G is generic, we

compute the dimension h0 of this space to be

(n− r)−
∑
p∈S

(n− r + 1− Ĩp),

a nonnegative number by the inequality hypothesis. This number is also equal to
χ(A(S,Q,FS ,G, ϑ(Ĩ))), so h1 = 0, as desired.

Assume now that f ≥ 2. Let φ ∈ HomĨ(S,Q,FS ,G) be a general element. We

observe that the inequality for R = S can be expressed as χ(A(S,Q,FS ,G, ϑ(Ĩ))) ≥ 0.
If the general element φ is zero, then h1 = 0 follows, so we may as well assume φ 6= 0.
Let f̃ < f be the dimension of S̃ = kerφ and set T̃ = S̃ ∩ T . Let Y be the Schubert
position of S̃ in S with respect to FS , and let Ñ be the Schubert position of T̃ in S̃.
By the genericity hypothesis on the flags and Proposition 3.1, we have

(18) H1(A(S,Q,FS ,G, ϑ(Ĩ))) = H1(A(S̃, Q,FS(S̃),G, ϑ(Ĩ ′))),

where Ĩ ′ ∈
([n−r+f̃ ]

f̃

)s
is defined by Ĩ ′pa = (Ĩp

Y pa
− Y p

a + a) for a = 1, ..., f̃ .

Let G̃ be the subgroup of GL(S) consisting of those group elements which act on T ,

S̃, and T̃ , and act trivially on S/S̃. If ~g ∈ G̃×s, then it is easy to see that (~gFS ,G) ∈
ZS,T,N × Fl(Q)s and φ ∈ HomĨ(S,Q,~gFS ,G). On the other hand, a straightforward

argument with bases shows that G̃×s acts transitively on the set of flags ZS̃,T̃ ,Ñ . Thus,

the general pair (FS ,G) ∈ ZS,T,N × Fl(Q)s induces a general pair (FS(S̃),G) ∈ ZS̃,T̃ ,Ñ
(compare with the proof of Proposition 6.1).

We are now in position to apply the inductive hypothesis to the right hand side of
(18). We need only check that the appropriate inequalities hold for all subspaces R̃ of

S̃. But this follows immediately from regarding R̃ as a subspace of S, where inequalities
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are assumed to hold, and the fact that R̃ ⊆ S̃ has Schubert position X̃ in S̃ with respect
to FS(S̃) if and only if R̃ has Schubert position YX̃ in S with respect to FS . �

Appendix A. Representability

The goal of this appendix is to prove Lemma 1.2. Points (1) and (2) are proven
in [Bel06] and [Bel07]. We will prove (3), (4), and (5). To begin, we present a lemma
from the appendix of [Bel06]. The dimension count is new, but follows from Belkale’s
argument in a straightforward way.

Lemma A.1. Let P be a vector bundle of rank ρ on a scheme Z. Assume that P
has a subbundle Σ which is filtered by subbundles 0 = Σ0 ⊆ Σ1 ⊆ ... ⊆ Σk = Σ.
Let 0 = `0 ≤ `1 ≤ ... ≤ `k ≤ ρ be nonnegative integers. Let α : Sch/Z → Set be
the contravariant functor which associates to a scheme T over Z the set of complete
filtrations F• of P|T by subbundles such that the composite map

Σa|T → Σ|T → P|T /F`a
is 0 for all a = 0, ..., k. Then α is representable by a scheme A which is surjective and
smooth over Z of relative dimension

(19) dim Fl(kρ)−
ρ−1∑
t=1

rk(Σct),

where ct = max{a|`a ≤ t}. Moreover, if Z is irreducible, so is A.
Also, if α̃ is the same functor as α with the stricter condition that

Σa|T → Σ|T → P|T /Ft
is exact whenever `a ≤ t ≤ `a+1 − 1, then α̃ is represented by an open, possibly empty
subscheme Ã of A, which is also surjective and smooth over Z, and irreducible if Z is.

Remark A.1. The schemes A base change properly, in the sense that if Z ′ → Z is
a morphism, then A ×Z Z ′ represents the functor corresponding to the pulled back
bundle P|Z′ with the pulled back filtration. In particular, if Z ′ → Z is a morphism of

irreducible schemes, then Ã|Z′ is irreducible.

Remark A.2. In the case where 0 = Σ0 ⊆ Σ1 ⊆ ... ⊆ Σk = Σ is a complete filtration
of Σ (with all inclusions proper) and 0 = `0 < `1 < ... < `k ≤ ρ (with all inequalities

strict, hence corresponding to some L ∈
(
ρ
k

)
), the quantity

∑ρ−1
t=1 rk(Σct) in (19) is equal

to kρ −
∑k

a=1 `a. This may be rewritten as |λ(L)| + dim Fl(kk). Thus, the relative
dimension of A over Z is then:

(20) dim Fl(kρ)− |λ(L)| − dim Fl(kk)

(where the lower “k” of course refers to the field).

Let K, J , and N be as in Section 1.3 (3). We will build the scheme UK,J (V ) in
several steps. Recall that we would like UK,J on the level of points to be the set of all
tuples (S, S′, T,F), where S and S′ are f -dimensional subspaces of V with g-dimensional
intersection T , satisfying S, S′ ∈ Ω◦K(F), T ∈ Ω◦J (F). Thus, a natural starting point
would be to consider the contravariant functor Af,f,g : Sch/k → Set which associates
to each k-scheme Y the set of triples consisting of two rank f subbundles S and S ′ of
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V ⊗OY , and a rank g subbundle T of V ⊗OY such that T → V ⊗OY is precisely the
kernel of

V ⊗OY → (V ⊗OY /S)⊕ (V ⊗OY /S ′).
The functor Af,f,g is representable by a smooth, irreducible scheme Af,f,g of dimension
(if nonempty) 2(f − g)(r − f) + g(r − g).

Indeed, one builds Af,f,g by starting with the Grassmannian of g-dimensional sub-
spaces of V , which has dimension g(r − g). Using the tautological bundle on the
Grassmannian, one can build a scheme over Gr(g, V ) (smooth of relative dimension
(f − g)(r − f)) whose fiber over T is the set of all f -dimensional S in V containing T .
Similarly, build over that scheme the scheme whose fiber over (T, S) is the set of all S′

containing T . The locus where T is precisely the intersection of S and S′ is open. This
proves (3) in Lemma 1.2.

We now define a functor B : Sch/Af,f,g → Set which associates to Y the same data as

Af,f,g with the additional data of s-many complete filtrations by subbundles {FT ,p• }sp=1

of T (so k-points of B look like (S, S′, T,FT )). This is clearly representable by the flag
bundle

B = Fl(T )×Af,f,g ...s-many...×Af,f,g Fl(T )

over Af,f,g, which is irreducible, surjective, and smooth over Af,f,g of relative dimension
dim Fl(kg)s.

Similarly, define a functor C : Sch/B → Set which associates to Y the same data as

B with the additional data of s-many complete filtrations by subbundles {FS,p• }sp=1 of

S, subject to the constraints that for p = 1, ..., s, a = 0, ..., g, the kernel of T → S/FS,pt

is precisely FT ,pa whenever Np
a ≤ t < Np

a+1 - here we take Np
0 = 0, Np

g+1 = f + 1. The

k-points of C look like (S, S′, T,FT ,FS) so that FT is the s-tuple of flags induced on T
by FS and T is in Schubert position N in S with respect to FS .

The functor C sits atop a tower of functors,

C = Cs → Cs−1 → ...→ C2 → C1 → B,
where C1 associates to Y the same data as B with the additional data of a complete

filtration by subbundles FS,1• of S, subject to the constraints that for a = 1, ..., g, the

kernel of T → S/FS,1t is precisely FT ,1a whenever N1
a ≤ t < N1

a+1. Apply Lemma
A.1 and the subsequent remarks with Z = B, ρ = f , k = g, P = S, Σ = T with

its universal complete filtration FT ,1• on B, and L = N1, to obtain a representing
scheme C1 which is irreducible, smooth, and surjective over B of relative dimension
dim Fl(kf ) − |λ(N1)| − dim Fl(kg). Repeat this s-many times to obtain at the top of
the tower a representing scheme C for C. Then define a functor C′ : Sch/C → Set in
the obvious way, so that its k-points are (S, S′, T,FT ,FS ,FS′) with the same Schubert
conditions also for FS′ . Repeating the argument of C for C′, one obtains a representing
scheme C ′ which is irreducible, smooth, and surjective over B of relative dimension

2 dim Fl(kf )s − 2 dim Fl(kg)s − 2
s∑

p=1

|λ(Np)|.

Finally, define a functor D : Sch/C ′ → Set which associates to Y the same data as C′
with the additional data of s-many complete filtrations {Fp•}sp=1 of V ⊗OY , subject to
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the constraints that for b = 0, ..., f , the kernel of S → V ⊗OY /Fpt is precisely FS,pb and

the kernel of S ′ → V ⊗OY /Fpt is precisely FS
′,p

b whenever Kp
b ≤ t < Kp

b+1. The points
D(k) correspond bijectively to the set we called UK,J .

Proposition A.2. Let D be the functor defined above. Then D is representable by a
scheme which we call UK,J (V ), which is smooth, surjective, and irreducible over Af,f,g

of relative dimension:

dim Fl(V )s +
s∑

p=1

(|λ(Jp)| − 2|λ(Kp)| − 2|λ(Np)|).

This proves (4) of Lemma 1.2.

Proof. It suffices to prove the assertions above for the functor D̃ which associates to Y
the same data as D, with the milder condition that for b = 0, ..., f , the maps

FS,pb → V ⊗OY /FpKp
b

and FS
′,p

b → V ⊗OY /FpKp
b

are 0, for then D is an open subfunctor of D̃.
The conditions of C′ imply that for each scheme Y over C ′, a = 0, ..., g, and p = 1, ..., s,

we have a canonical inclusion of bundles FT ,pa → FS,pb ⊕F
S′,p
b whenever Np

a ≤ b < Np
a+1.

The cokernel of the inclusion is a bundle of rank 2b− a, which we denote FS,pb +FS
′,p

b .

We may also realize this sum as the image of the map FS,pb ⊕FS
′,p

b → V ⊗OY , so it is
naturally a subbundle of V ⊗OY . The maps

FS,pb → V ⊗OY /FpKp
b

and FS
′,p

b → V ⊗OY /FpKp
b

are both zero if and only if

FS,pb + FS
′,p

b → V ⊗OY /FpKp
b

is zero. For each p = 1, ..., s, we have a filtration of Σ = S + S ′ by f -many subbundles

Σb = FS,pb + FS
′,p

b . Applying Lemma A.1 s-many times, once for each such filtration,

we see that D̃ is representable by an irreducible scheme D̃, which is surjective and
smooth over C ′. A computation involving the dimension count in A.1 gives the relative
dimension of D̃ over C ′ to be:

dim Fl(V )s − 2 dim Fl(kf )s − 2(

s∑
p=1

|λ(Kp)|) + dim Fl(kg)s +

s∑
p=1

|λ(Jp)|.

Combining this with the relative dimension of C ′ over B and the relative dimension of
B over Af,f,g, one obtains the proposed number. �

Let I and L be as in Section 1.3. We would like HI,K,J to be a scheme over UK,J
whose fiber over (S, S′, T,F) is the set of quadruples (G,G′, φ, φ′) where G,G′ ∈ Fl(Q)s

and φ ∈ HomI(V,Q,F ,G), φ′ ∈ HomI(V,Q,F ,G′) are such that kerφ = S, kerφ′ = S′.
Such a scheme exists provided the functor E is representable, where E associates to Y
over UK,J the same data as D above, with the additional data of 2s-many complete

filtrations {Gp•}sp=1, {G′p• }sp=1 by subbundles of Q⊗OY and two homomorphisms of vector
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bundles φ, φ′ : V ⊗OY → Q⊗OY subject to the conditions kerφ = S, kerφ = S ′, and
the composite maps

Fpa → V ⊗OY
φ−→ Q⊗OY → Q⊗OY /GpIpa−a

Fpa → V ⊗OY
φ′−→ Q⊗OY → Q⊗OY /G′pIpa−a

are zero for a = 1, ..., r, p = 1, ..., s.

Proposition A.3. Let E : Sch/UK,J → Set be as above. Then E is represented by
a scheme HI,K,J which is irreducible, smooth, and surjective over UK,J of relative
dimension

2(r − f)(n− r) + 2 dim Fl(Q)s + 2

s∑
p=1

(|λ(Lp)| − |λ(Ip)| − |λ(Kp)|).

Proof. Virtually identical to [Bel06] Lemma A.5. �

Appendix B. A Short Proof of the Geometric Horn Conjecture

Belkale [Bel06] proved, in a precise sense, that given an element (F ,G) ∈ Fl(M)s ×
Fl(Q)s, which is chosen sufficiently generally, the induced flags on kerφ and M/ kerφ
are themselves mutually sufficiently general, where φ is a general element in the space
HomH(M,Q,F ,G). Here “sufficiently general” means roughly that the flags are general
enough to perform intersection theoretic computations and to calculate the dimensions
of the vector spaces HomH(M,Q,F ,G). To prove the Horn conjecture, we will require
a similar result on the mutual genericity of (F(kerφ),G). We begin by reiterating the
results of Belkale.

Given M of dimension m, there are only finitely many s-tuples H of index sets in
[m], so by intersecting finitely many Zariski open subsets of Fl(M)s, we obtain an open
subset β with the property that each s-tuple of flags F in β is such that for any s-tuple
of index sets H in [m], each of the same cardinality, the Schubert intersection ΩH(F)
is proper and transverse at every point. An element F of β is said to be generic for
intersection theory.

Similarly, givenH, there is by Lemma 1.3 a nonempty, largest open subsetO(M,Q,H)
of Fl(M)s × Fl(Q)s such that hdH is constant on this open set, say hdH = (D, e, E)
and such that HH,E → Fl(M)s × Fl(Q)s is flat and surjective after base change to
O(M,Q,H).

Belkale defined a simultaneous choice of open subset AM,Q ⊆ Fl(M)s × Fl(Q)s for
every pair of nonzero vector spaces M and Q such that:

• The choice is “functorial for isomorphisms,” in the sense that if M →M ′, Q→
Q′ are vector spaces isomorphisms, then the induced isomorphism of varieties
Fl(M)s × Fl(Q)s to Fl(M ′)s × Fl(Q′)s sends AM,Q isomorphically onto AM ′,Q′ .
In particular, AM,Q is stable under the diagonal action of GL(M) ×GL(Q) on
Fl(M)s × Fl(Q)s.
• Fixing M and Q, if (F ,G) ∈ AM,Q, then

G1. F and G are generic for intersection theory in M and Q respectively.

G2. For any choice of H ∈
(

[n−r+m]
m

)s
, we have (F ,G) ∈ O(M,Q,H).
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G3. For H as in G2, there is a nonempty open subset of HomH(M,Q,F ,G)
such that for each φ in this open subset, if 0 < dim kerφ < m, then
(F(kerφ),F(M/ kerφ)) lies in Akerφ,M/ kerφ.

Let BM,Q denote the subset of AM,Q with the additional property:

G4. Same as G3, except that we require (F(kerφ),G) to lie in Bkerφ,Q.

Proposition B.1. For a fixed vector space Q 6= 0, there is a collection of nonempty
open subsets {BM,Q ⊆ Fl(M)s × Fl(Q)s}M 6=0 with the properties G1 through G4.

Proof. The proof resembles that of Section 8.2 in [Bel06]. A slight difference occurs in
the “Nonemptiness” section. In Belkale’s proof, he shows that fixing a proper nonzero
subspace R of M , the map HH,E |R → Fl(R)s ×Fl(M/R)s is dominant (for particularly
chosen H, E). We must show instead that the map HH,E |R → Fl(R)s × Fl(Q)s is
dominant. To do this, take G in the open image of HH,E |R → Fl(Q)s, and consider the
map:

(21) HH,E |(φ,G) → Fl(R)s,

for some φ with kerφ = R such that the set of F with (φ,F ,G) ∈ HH,E is nonempty. It
suffices to prove that (21) is dominant. This is seen by considering the actions of G×s

on both the domain and codomain of (21), where G is the largest subgroup of GL(M)
which acts on R and acts trivially on M/R. The action of G×s on Fl(R)s is transitive,
and (21) is equivariant, so dominance (in fact surjectivity) follows. �

Following an idea sketched by Belkale in discussions, we now use Proposition 3.1 to
simplify his published proof of the Horn conjecture [Bel06].

Theorem B.2 (Geometric Horn). Let I ∈
(

[n]
r

)s
be arbitrary. The following are equiv-

alent:

A. The product ωI is nonzero in H∗(Gr(r, n))

B. For all 0 < f ≤ r and all K ∈
([r]
f

)s
such that ωK is nonzero in H∗(Gr(f, r)),

one has the inequality:

(†IK)

s∑
p=1

f∑
a=1

(n− r +Kp
a − I

p
Kp
a
)− f(n− r) ≤ 0.

Proof. (A)⇒(B). Assume (A). Let E be a general complete flag in the n-dimensional
space W . The intersection Ω◦I(E) is nonempty, say V ∈ Ω◦I(E). Note that the intersec-
tion of cells is dense in the intersection of Schubert varieties for E generic (see [Bel06]
Proposition 1.1 for a proof). Let K as in (B) be such that ωK is nonzero. Then, the
intersection of Schubert varieties ΩK(E(V )) ⊆ Gr(f, V ) is nonempty of dimension at
least:

(22) dim Gr(f, V )−
s∑

p=1

codim(ΩKp(Ep(V ))) = f(r − f)−
s∑

p=1

f∑
a=1

(r − f + a−Kp
a)

Under the inclusion Gr(f, V ) ↪→ Gr(f,W ), we have:

(23) ΩK(E(V )) ⊆ ΩL(E),
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where Lpa = Ip
Kp
a
. Since E is generic, the intersection ΩL(E) has by Kleiman transversality

its expected dimension:

(24) f(n− f)−
s∑

p=1

f∑
a=1

(n− f + a− Ip
Kp
a
).

By (23), the quantity in (22) is less than or equal to the quantity in (24). This rearranges
to the inequality of (B) �

Proof. (B)⇒(A). Assume (B) and furthermore assume that we have proven for all r′ < r

and Ĩ in
([n−r+r′]

r′

)s
that ωĨ 6= 0 if for all 0 < g ≤ r′ and all J ∈

(
[r′]
g

)s
with ωJ nonzero

in H∗(Gr(g, r′)) the inequality

s∑
p=1

g∑
a=1

(n− r + Jpa − Ĩ
p
Jpa

)− g(n− r) ≤ 0

holds. The base case when r′ = 1 is easy. For example, one may use the simple
description of the cohomology ring H∗(Gr(1, N + 1)) as Z[h]/hN+1 where h is the class
of a hyperplane in Gr(1, N + 1) = PN .

In the general case, let (F ,G) ∈ BV,Q (see Proposition B.1), and let S be the kernel
of a general element of HomI(V,Q,F ,G). Suppose that S has dimension f and lies in
Schubert position K with respect to F . By Proposition 3.1, we have

(25) h1(A(V,Q,F ,G, ϑ(I))) = h1(A(S,Q,F(S),G, ϑ(Ĩ))),

where Ĩpa = Ip
Kp
a
−Kp

a + a. An easy consequence of Proposition 1.1 is that (A) holds if

and only if the left hand side of (25) is zero. So it suffices to show the right hand side
of (25) is zero. Clearly this holds if f = dimS = 0.

Assume now that f > 0. Let 0 < g ≤ f and J ∈
(

[f ]
g

)s
be such that the product ωJ is

nonzero in H∗(Gr(g, S)). Let T ∈ Gr(g, S) lie in the nonempty intersection Ω◦J (F(S));
here we use the fact that (F ,G) ∈ BV,Q and hence (F(S),G) ∈ BS,Q is generic. One
also has that T ∈ Ω◦KJ

(F) ⊆ Gr(g, V ). Since F is generic, the product ωKJ is nonzero

in H∗(Gr(g, r)). The hypothesis (B) now gives the inequality

0 ≥
s∑

p=1

g∑
a=1

(n− r +Kp
Jpa
− Ip

Kp

J
p
a

)− g(n− r) =

s∑
p=1

g∑
a=1

(n− r + Jpa − Ĩ
p
Jpa

)− g(n− r)

This is precisely the inequality needed to apply the inductive hypothesis, so ωĨ 6= 0 in
H∗(Gr(f, n− r+ f)) By Proposition 1.1, there is a maximal nonempty open locus O in

Fl(S)s × Fl(Q)s of points (F ′,G′) such that h1(A(S,Q,F ′,G′, ϑ(Ĩ))) = 0. Note that O
contains BS,Q - in particular contains (F(S),G) because h1 is constant along BS,Q. We
conclude that right hand side of (25) is 0. �
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